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Lecture 25: May 8

Meromorphic connections. Before the full Riemann-Hilbert correspondence was
proved, Deligne established an important special case. It has to do with the rela-
tionship between locally constant sheaves and vector bundles with integrable con-
nection. Suppose that X is a nonsingular and proper algebraic variety over the
complex numbers. If we are given a vector bundle of rank r with integrable connec-
tion, then the subsheaf of flat sections is a locally constant sheaf of rank m (with
respect to the analytic topology). Conversely, given a locally constant sheaf of rank
m, say E, we can form the holomorphic vector bundle E = OX ⌦C E, which has
the same (locally constant) transition functions as E. The formula

r(f ⌦ s) = df ⌦ s

defines an integrable connection on E , and the subsheaf of r-flat sections is of
course isomorphic to E. Lastly, X is proper, and so the pair (E ,r) actually comes
from an algebraic vector bundle with intgrable connection (by a version of Serre’s
GAGA theorem). The conclusion is that the (a priori topological) object E is
actually algebraic.

Deligne’s version of the Riemann-Hilbert correspondence generalizes this to not
necessarily proper varieties. It goes through an intermediate class of objects, called
meromorphic connections. Here is the definition. Let X be a complex manifold,
and D ✓ X a divisor. For simplicity, we are only going to consider the case where D
has simple normal crossing singularities: D is a union of nonsingular hypersurfaces
meeting transversely. In suitable local coordinates x1, . . . , xn, the equation defining
D is of the form x1 · · ·xr = 0. We let

OX(⇤D)

be the sheaf of meromorphic functions on X that are holomorphic on X \ D; it
is naturally a subsheaf of j⇤OX\D, where j : X \ D ,! X is the inclusion of the
complement. The notation ⇤D is supposed to remind you of the pole order along
D. Locally, OX(⇤D) is isomorphic to OX [t]/(ht � 1), where h is a local equation
for D; it follows that OX(⇤D) is still a coherent sheaf of OX -algebras.

Definition 25.1. A meromorphic connection is a coherent OX(⇤D)-module M ,
together with an integrable connection

r : M ! ⌦1
X ⌦OX M

that satisfies the Leibniz rule r(fs) = df ⌦ s+ frs and the integrability condition
[r✓,r✓0 ] = r[✓,✓0].

Note. In the Leibniz rule, we are considering only f 2 OX , but the same formula
works for every f 2 OX(⇤D). To make this precise, define ⌦1

X(⇤D) as the sheaf of
meromorphic one-forms on X that are holomorphic on X \D, so that

⌦1
X(⇤D) = ⌦1

X ⌦OX OX(⇤D).

We can then consider r as a C-linear morphism

r : M ! ⌦1
X(⇤D)⌦OX(⇤D) M,

and now the Leibniz rule makes sense for f 2 OX(⇤D).

A meromorphic connection is naturally a left DX -module, since the two identities
imply that the left action by TX extends to a left action by DX (see the discussion
in Lecture 10). On X \D, the D-module is coherent, and therefore a holomorphic
vector bundle with integrable connection. In that sense, a meromorphic connection
is an extension of a vector bundle with integrable connection on X \D to an object
on X with singularities along D.
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Definition 25.2. If (M,r) and (N,r) are two meromorphic connections, then a
morphism ' : (M,r) ! (N,r) is a morphism of OX(⇤D)-module ' : M ! N that
is compatible with the connections, in the sense that

r
�
'(s)

�
= (id⌦')(rs).

We denote by Conn(X,D) the category of meromorphic connections on (X,D).
It is an abelian category. There are two simple but useful observations about
morphisms in Conn(X,D). The first says that morphisms are determined by what
their restriction to X \D.

Proposition 25.3. Let ' : (M,r) ! (N,r) be a morphism of meromorphic con-
nections. If '

��
X\D is an isomorphism, then ' is an isomorphism.

Proof. The kernel and cokernel of ' are meromorphic connections whose support
is, by construction, contained inside D. It is therefore enough to prove that a
meromorphic connection (M,r) such that SuppM ✓ D must be trivial. Let s be
any local section of M , and h a local equation for D. The subsheaf OX · s ✓ M

is coherent over OX , and its support is contained inside D, and so h
m
s = 0 for

m � 0. But then s = h
�m(hm

s) = 0, proving that M = 0. ⇤

The second observation is useful for functoriality questions. Suppose that (M,r)
and (N,r) are two meromorphic connections. Then

HomOX(⇤D)(M,N)

is again an OX(⇤D)-module in a natural way, and the formula

(r')(s) = (id⌦')(rs)�r
�
'(s)

�

defines an integrable connection that makes HomOX(⇤D)(M,N) into a meromor-
phic connection. You should check that morphisms of meromorphic connections
' : (M,r) ! (N,r) are exactly the same thing asr-flat global sections ofHomOX(⇤D)(M,N).

Deligne’s theorem on meromorphic connections. Deligne proved that locally
constant sheaves on X \D correspond to meromorphic connections on (X,D) that
are regular along D. Regularity was originally defined by restricting to curves, but
in the case where D is a normal crossing divisor, we can use another definition that
is closer to the Kashiwara-Kawai notion of regularity for D-modules.

Definition 25.4. A meromorphic connection (M,r) is called regular if there is a
locally free OX -module L with

M ⇠= OX(⇤D)⌦OX L,

such that in any local trivialization of L, the connection has at worst logarithmic
poles along D.

More precisely, suppose that e1, . . . , em form a local trivialization for L. Then
the condition is that

rei =
X

j,k

a
k
i,j

dxk

xk
⌦ ej ,

for certain holomorphic functions aki,j . Since L is then preserved by the di↵erential
operators x1@1, . . . , xn@n, this means thatM , viewed as a left DX -module, is regular
in the sense of Kashiwara and Kawai. The letter L comes from the fact that L is
traditionally called a lattice.

Keeping the notation from above, we let Ak
2 Matm⇥m(OX) be the matrix with

entries aki,j . The restriction of Ak to the divisor Dk, defined by the equation xk = 0,
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is a well-defined endomorphism of the locally free sheaf L
��
Dk

, called the residue of
r along Dk. We use the symbol

ResLDk
(r) = A

k
��
Dk

to denote the residue. We may drop the superscript L when the lattice is clear from
the context.

Lemma 25.5. Let (M,r) be a meromorphic connection with lattice L.

(a) On Dk \D`, the residues ResDk(r) and ResD`(r) commute.
(b) The eigenvalues of ResD`(r) are locally constant along D`.

Proof. In the notation from above, we have

rei =
X

j,k

a
k
i,j

dxk

xk
⌦ ej ,

and A
k is the m ⇥ m-matrix with entries a

k
i,j . With respect to the trivialization

e1, . . . , em, we therefore have r@k = A
k
/xk. The integrability condition for the

connection is [r@k ,r@` ] = 0, which expands out to

@

@xk

✓
A

`

x`

◆
+

A
`

x`

A
k

xk
=

@

@x`

✓
A

k

xk

◆
+

A
k

xk

A
`

x`
.

After rearranging the terms, this becomes

xk@k(A
`) +A

`
A

k = x`@`(A
k) +A

k
A

`
,

and so the restriction of the two matrices A
k and A

` to the set xk = x` = 0
commute with each other.

For the proof of the second assertion, denote by L̄ the restriction of L to the
divisor D`; similarly, Āk is the restriction of Ak, and so on. The formula

rēi =
X

j,k 6=`

ā
k
i,j

dxk

xk
⌦ ēj

defines an integrable connection with logarithmic poles on L̄, and one checks that
Ā

` is a horizontal section of HomOD`
(L̄, L̄). It follows that the eigenvalues of Ā`

must be locally constant. ⇤
Deligne’s main theorem is that every bundle with integrable connection on U can

be uniquely extended to a regular meromorphic connection on (X,D); in fact, even
the lattice is more or less unique, except for a small ambiguity in the eigenvalues
of the residues.

Theorem 25.6. Let X be a complex manifold, and D ✓ X a divisor with simple
normal crossing singularities. Set U = X \D, and fix a section ⌧ : C/Z ! C of the
projection C ! C/Z. Given (M,r) 2 Conn(U), there is a unique locally free sheaf
L⌧ on X with the following three properties:

(a) One has L⌧

��
U
= M .

(b) The connection r : M ! ⌦1
U ⌦OU M extends to

r : M⌧ ! ⌦1
X ⌦OX M⌧ ,

where M⌧ = OX(⇤D)⌦OX L⌧ .
(c) At each irreducible component of D, the residue of r has eigenvalues in the

set ⌧(C/Z) ✓ C.

Moreover, with the above choice of L⌧ , the restriction mapping

�(X,M⌧ )
r
! �(U,M)r

from r-flat sections of M⌧ to r-flat sections of M is an isomorphism.
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Proof of Deligne’s theorem. The proof of Deligne’s theorem has two parts. The
first part is to prove that L⌧ is unique (up to isomorphism). The second part is
to construct a suitable lattice L⌧ locally on X; the local objects can then be glued
together into a global lattice using uniqueness.

Let us start with the local existence, since that is easier. Since we are working
locally, we can assume that X = �n, where � ✓ C is an open disk containing
the origin. The divisor D will be given by the equation x1 · · ·xr = 0, and so
U = (�⇤)r ⇥�n�r. By the correspondence between vector bundles with integrable
connection and locally constant sheaves, (M,r) 2 Conn(U) corresponds to a locally
constant sheaf on U , hence to a representation ⇡1(U) ! GLm(C), where m is the
rank of M . Since the fundamental group of U is abelian, this is equivalent to giving
r commuting matrices C1

, . . . , C
r
2 GLm(C). (These are the monodromy matrices

of the locally constant sheaf.)
It is a simple exercise to show that there are matrices �1, . . . ,�r 2 Matm⇥m(C),

uniquely determined by the following three conditions:

(1) e
2⇡i�j

= C
j ,

(2) the eigenvalues of �j lie in the set ⌧(C/Z),
(3) �1

, . . . ,�r commute.

We can now define L⌧ = O
�m
X , and put a meromorphic connection on the free

OX(⇤D)-module M⌧ = OX(⇤D)�m by the formula

rei =
X

j,k

�k
i,j

dxk

xk
⌦ ej .

From the construction, it is clear that this has the three properties in the statement
of the theorem. What about flat sections? A r-flat section of M is the same thing
as a monodromy invariant vector v 2 C

m, meaning one with C
1
v = · · · = C

r
v = v.

This is equivalent to �1
v = · · · = �r

v = 0, and so v also represents a r-flat section
of M⌧ .

The more demanding part of the proof is the uniqueness of L⌧ . You will see that
the argument is very similar to what we did for the theorem of Fuchs (in Lecture 20).
The problem is local, and so we continue to assume that X = �n, with coordinates
x1, . . . , xn, and D defined by x1 · · ·xr = 0. Suppose that L and L

0 are two lattices
that both have the three properties stated in the theorem. Denote by r and r

0 the
logarithmic connections on L and L

0. With respect to a trivialization e1, . . . , em

for L, we can write

rei =
X

j,k

a
k
i,j

dxk

xk
⌦ ej ,

where a
k
i,j are holomorphic functions on X; we set

! =
X

k

A
k dxk

xk
,

which is an m ⇥m-matrix of logarithmic one-forms. We use primes to denote the
corresponding objects for (L0

,r
0).

By assumption, (L,r)
��
U

⇠= (L0
,r

0)
��
U
. After a short calculation, the isomor-

phism between the two bundles with connection translates into the existence of an
invertible matrix S 2 GLm(OU ) such that

dS = S! � !
0
S.

The entries of S are holomorphic functions on U = X \D, possibly with essential
singularities along D. To prove the uniqueness statement, it is enough to show
that S 2 GLm(OX), meaning that the entries of S should extend to holomorphic
functions on X. By Hartog’s theorem, holomorphic functions extend over subsets
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of codimension � 2, and so we only need to to prove that the entries of S extend
over the generic point of each irreducible component of D. To keep the notation
simple, we will check this at points of

D1 \

[

k 6=1

Dk,

meaning at points where x1 = 0 but x2 · · ·xr 6= 0. Write

! = A
1 dx1

x1
+

X

k�2

A
k dxk

xk

!
0 = A

01 dx1

x1
+

X

k�2

A
0k dxk

xk

The relation dS = S! � !
0
S gives

(25.7) x1
@S

@x1
= SA

1
�A

01
S,

and after taking the matrix norm of both sides, we obtain

|x1| ·

����
@S

@x1

����  C · kSk,

where C > 0 is a constant that depends on the size of the (holomorphic) entries
of the two matrices A

1 and A
01. As in Lecture 20, we can now apply Grönwall’s

inequality to deduce that the entries of S have moderate growth near x1, hence are
meromorphic functions on the set where x2 · · ·xr 6= 0.

It remains to show that the entries of S are actually holomorphic functions for
x2 · · ·xr 6= 0. Consider the Laurent expansion

S =
1X

j=p

Sjx
j
1,

where Sp 6= 0 is the leading term. After substituting this into (25.7), we get

1X

j=p

jSjx
j
1 =

1X

j=p

�
SjA

1
�A

01
Sj

�
x
j
1.

The coe�cients at xp
1 equate to

pSp = Sp ·A
1
��
x1=0

�A
01��

x1=0
· Sp = Sp · Res

L
D1

(r)� ResL
0

D1
(r0) · Sp.

Since both ResLD1
(r) and ResL

0

D1
(r0) have their eigenvalues contained in the set

⌧(C/Z), this relation forces p = 0. Indeed, suppose that v is a nontrivial eigenvector
for ResLD1

(r), with eigenvalue �. Then

p(Spv) = �(Spv)� ResL
0

D1
(r0)(Spv),

and so Spv is an eigenvector for ResL
0

D1
(r0), with eigenvalue � � p. (Since S is

invertible, we must have Spv 6= 0). As the di↵erence of the two eigenvalues is
an integer, this can only happen for p = 0. The conclusion is that S extends
holomorphically to all of X, proving the desired uniqueness.
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Deligne’s Riemann-Hilbert correspondence. We are now ready for Deligne’s
version of the Riemann-Hilbert correspondence. Let Loc(X\D) denote the category
of locally constant sheaves (of finite-dimensional C-vector spaces) on X \D.

Theorem 25.8. Let X be a complex manifold, and D ✓ X a divisor with simple
normal crossing singularities. Then the restriction functor

Conn(X,D)reg ! Loc(X \D)

is an equivalence of categories.

Here we associate to a meromorphic connection (M,r) 2 Conn(X,D) the locally
constant sheaf of r-flat sections of M

��
U
, where U = X \D. The proof is very easy

at this point. First, every locally constant sheaf on X \ D is the sheaf of r-flat
sections of some (M,r) 2 Conn(U). By Theorem 25.6, there is an extension of
(M,r) to a regular meromorphic connection on (X,D): for any choice of ⌧ , the pair
(M⌧ ,r) will do. This shows that the restriction functor is essentially surjective.

It remains to prove that it is also fully faithful. The functor of r-flat sections
gives an equivalence of categories between Conn(U) and Loc(U), and so it su�ces
to prove that Conn(X,D)reg ! Conn(U) is fully faithful. Let (M,r) and (N,r)
be meromorphic connections, and set H = HomOX(⇤D)(M,N); recall that (H,r)
is again a meromorphic connection. As we saw earlier, we have an isomorphism

HomConn(X,D)

⇣
(M,r), (N,r)

⌘
⇠= �(X,H)r

between the set of morphisms in the category Conn(X,D) and the set of r-flat
sections of H. Similarly,

HomConn(U)

⇣
(M,r)

��
U
, (N,r)

��
U

⌘
⇠= �(U,H)r,

and so the problem reduces to showing that

�(X,H)r ! �(U,H)r

is an isomorphism.

Lemma 25.9. Let (M,r) 2 Conn(X,D) be a regular meromorphic connection.
Then the restriction morphism

�(X,M)r ! �(U,M)r

is an isomorphism, where U = X \D.

Proof. Since (M,r) is regular, there is a lattice L with M ⇠= OX(⇤D) ⌦OX L,
such that r has logarithmic poles. Pick any section ⌧ : C/Z ! C, for example
with Re ⌧ 2 [0, 1). By Theorem 25.6, there exists L⌧ with (L,r)

��
U

⇠= (L⌧ ,r)
��
U
.

Arguing as in the proof of Theorem 25.6, we find that the isomorphism is locally
given by a matrix with meromorphic entries, and hence that (M,r) is isomorphic
to (M⌧ ,r) as a meromorphic connection. Now the assertion about flat sections
follows from the last sentence of Theorem 25.6. ⇤

Deligne’s Riemann-Hilbert correspondence again leads to an interesting alge-
braicity result. Suppose that X is a nonsingular proper variety. Then every locally
constant sheaf on X \ D comes from a meromorphic connection on (X,D), and
hence (by a version of Serre’s GAGA theorem) from an algebraic object. Since we
have resolution of singularities, we can write every nonsingular algebraic variety
in the form X \ D. Thus every locally constant sheaf on a nonsingular algebraic
variety comes from an algebraic vector bundle with integrable connection.
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Exercises.

Exercise 25.1. Let (M,r) and (N,r) be meromorphic connections. Check that�
HomOX(⇤D)(M,N),r

�
is a meromorphic connection, and that ' : (M,r) ! (N,r)

is a morphism of meromorphic connections if and only if, when viewed as a global
section of HomOX(⇤D)(M,N), it satisfies r' = 0.

Exercise 25.2. Let C 2 GLm(C). Show that there is a unique � 2 Matm⇥m(C)
such that e2⇡i� = C and such that the eigenvalues of � lie in the set ⌧(C/Z).


