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LECTURE 26: MAy 10

One-forms on varieties of general type. In the final two lectures, I am going to
show you an application of Z-module theory to a problem in algebraic geometry. It
has to do with holomorphic one-forms and their zero loci. Recall that on a smooth
projective curve of genus g > 1, every holomorphic one-form has exactly 2g — 2
zeros, counted with multiplicity. The situation for surfaces is less clear, but one
can still show that every holomorphic one-form on a surface of general type must
have a non-empty zero locus. (We'll see a proof of this fact in a second.) This
lead Christopher Hacon and Sandor Kovécs (and, independently, Tie Luo and Qi
Zhang) to conjecture that the same result should hold on any variety of general
type; they also proved their conjecture for threefolds. A few years ago, Mihnea
Popa and I used Z-modules to prove the conjecture in general. The proof I am
going to present is a simplified version of our original argument that Chuanhao Wei
and I found sometime afterwards.

Theorem 26.1. Let X be a smooth projective variety over the complexr numbers.
If X is of general type, then every holomorphic one-form on X has a non-empty
zero locus.

To be precise, for any w € H°(X,Q%), we define the zero locus to be
Zw)={reX |wT,X)=0}.

Then the theorem is claiming that if X is of general type, in the sense that
dim H°(X,w%®) grows like a constant times m¥™ X then necessarily Z(w) # 0
for every w € H(X, Q% ). Another motivation for thinking that this might be true
is that one-forms are dual to vector fields, and zero loci of vector fields are of course
related to the topology of X. (For example, if X admits an everywhere nonzero
vector field, then its Euler characteristic must be zero.)

Ezxample 26.2. Let us consider the case of surfaces. Suppose that X is a smooth
projective surface of general type. Suppose that there was a holomorphic one-form
w € H°(X, Q%) with empty zero locus. We will use some of the many numerical
identities for surfaces to produce a contradiction.

First, we observe that X must be minimal. Otherwise, X would be the blowup
of a smooth projective surface Y at some point, and since H%(X, Q%) = HO(Y,Q},),
the one-form w would be the pullback of a one-form from Y. But then w has to
vanish at some point of the exceptional divisor, contradiction. Now the fact that X
is a of general type means that c;(X)? > 1; together with the Bogomolov-Miyaoka-
Yau inequality, we get

3ca(X) > er(X)? > 1.

But ¢2(X) is the topological Euler characteristic of X, and so e(X) # 0.
Now the contradiction comes from the fact that a surface with a nowhere vanish-
ing holomorphic one-form must have e(X) = 0. To see this, consider the complex

0— O0x =5 0% =5 0% — 0
where the differential is wedge product with w. This is a Koszul complex, and

since Z(w) = 0, the complex is exact, and so its hypercohomology is trivial. The
hypercohomology spectral sequence

EVY = HY(X, Qg()
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therefore converges to zero. This gives

e(X) = Z(—l)p+q dim HY(X, Q%) = Z(_l)pﬂ dim EP?

p,q p,q
= (~1)P*dim E2Y =0,
p,q

since the alternating sum of the dimensions is preserved under taking cohomology.

Let us make a few general observations about Theorem 26.1. The condition that
X is of general type can be restated as follows: for any ample line bundle L on X,
there is some m > 1 such that w% ® L~ has a section.

Example 26.3. In the special case m = 1, we can use the Nakano vanishing theorem
to give a simple proof of Theorem 26.1. Suppose that H%(X,wx @ L~!) # 0,
and that there is a holomorphic one-form w € H?(X, Q%) with Z(w) = 0. Let
n = dim X. As before, the complex

0— Ox =50k 2% - 5 0% —0
is exact, and so the hypercohomology spectral sequence
P — H9(X, 0% 0 L)
converges to zero. Since L is ample, the Nakano vanishing theorem tells us that

E??" =0 for p+ q < n. In particular, all the differentials going into the term in the
position (n,0) vanish. But then

EM0 = EPY = HY(X,wx @ LY #0,

which is a contradiction. Unfortunately, this simple argument totally breaks down
once m > 2. But we will see that it is still basically a vanishing theorem that is
responsible for Theorem 26.1.

Another observation is that holomorphic one-forms are closely related to abelian
varieties. Indeed, we always have the Albanese mapping
alb: X — Alb(X) = HY(X,Q4)*/H.(X,Z)
to an abelian variety of dimension h°(X, QY ), and by construction,
H(X,QY) = H°(Alb(X), Q}Ub( x))-

It thus makes sense to consider more generally an arbitrary morphism f: X — A
to an abelian variety A, and to ask about the zero loci of the holomorphic one-
forms f*w, for w € H°(A,QY). Of course, we should replace the assumption “X of
general type” by the condition that w% ® f*L~! has sections for m > 1, where L
is an ample line bundle on A. This suggests the following more general result.

Theorem 26.4. Let f: X — A be a morphism from a smooth projective variety
to an abelian variety. If HO(X, w2 ® f*L™1) # 0 for some m > 1 and some ample
line bundle L on A, then one has Z(f*w) # 0 for every w € HY(A,QY).

Set W = HO(A, 9}4), and consider the incidence variety
Zy={(z,w) € X xW |z € Z(f'w)} C X x W.

The theorem is claiming that the second projection pa: Zy — W is surjective.
Since A is an abelian variety, we have T*A = A x W, and so the usual diagram of
morphisms between cotangent bundles becomes:

XxW -4, mx

lfxid
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With this notation, we have Z; = df ~1(0). When we looked at direct images for
Z-modules (in Lecture 13), we encountered the set

Sy = (f x id) (df 1(0)) = (f x id)(Zy).

It contains the characteristic varieties of the direct image Z-modules H’ f1wx. (In
Lecture 13, we proved this for closed embeddings.) Concretely,

Sp={(a,w) e AxW | fTHa)NZ(fw)#0},

and so Z(f*w) # 0 for every w € W is equivalent to the surjectivity of po: Sy — W.
This suggests the following strategy for proving Theorem 26.4: find a Z4-module
whose characteristic variety Ch(M) is contained in the set Sy, and then use results
about Z-modules to show that pa: Ch(M) — W must be onto.

We could not actually get this idea to work, but we found a good replacement
for it, based on work of Viehweg and Zuo. Here is a rought outline for the proof of
Theorem 26.4. On the cotangent bundle T*A = A x W, we construct a morphism
ZF — 4 between two coherent sheaves, with the following three properties:

(a) The support of .# is contained in the set Sy.

(b) The induced morphism H?(A x W,.%) — H°(A x W,¥) is nontrivial.

(¢) The coherent sheaf (p2),¥ on W is torsion-free.
Here p1: AXxW — A and py: A x W — W are the two projections. We will see
next time that ¢ is (almost) the coherent sheaf coming from a Z4-module M with
a good filtration Fe M.

Lemma 26.5. Such a morphism % — & can only exist if po(Sy) = W.

Proof. Consider the induced morphism

(p2)«F — (p2):9Y.
Both sheaves are coherent (by properness of ps), and the support of (p2)«.Z is
contained in the set p2(Sy). Now suppose that p2(Sy) # W. Then (p2)..Z is a

torsion sheaf, and so the morphism to the torsion-free sheaf (p2).¥ must be trivial.
Taking global sections, we find that

HO(A X W, Z) = HY (W, (p2)..7) — HO(W, (p2).9) = HO(A x W, %)
is trivial; but this is a contradiction. [l

Filtered Z-modules and the Rees construction. For the proof of Theo-
rem 26.4, it is important to work with pairs (M, Fe M), where M is a coherent
Z-module, and Fe M a good filtration. Here the filtration is not just a tool to
study Z-modules, but an essential piece of data. One can define the direct image
and duality functors for filtered Z-modules by analogy with the unfiltered case, as
follows.

Let X be a nonsingular algebraic variety over a field k (of characteristic zero).
We can combine Zx with its order filtration FyZx into a single sheaf of algebras

o0
Ix = @ FyDx,
k=0
called the Rees algebra of Px. This is a sheaf of non-commutative graded algebras,
with multiplication defined in the obvious way. We denote by z € @X,l the image
of 1 € F19x; then P contains a copy of Ox|z]. Tt is easy to see that

9}(/9}((2 — Zo) ~ 9y

for every zg # 0, because in the quotient, each FZx gets identified with its image
in Fp419x. Likewise,
9}(/@){2 = gI“F@)(,
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because in the quotient, the image of F,Zx in Fj4+1%x goes to zero. We can
therefore think of the Rees algebra Dx as a family of algebras over the affine line
Spec k[z], in which Zx deforms into gr’ Zx.

Given a coherent left (or right) Zx-module M and a good filtration Fe M, we
can form the Rees module

M =RpM =P FM.

kEZ

This is a graded left (or right) module over Zx in the obvious way; since the
filtration is good, M is coherent over Zx. As before, one checks that

M/(Z - ZQ)M =M
for every zg # 0, whereas
M)z M = grf M.
An important point is that not every graded Px-module comes from a filtered
P x-module.

Lemma 26.6. A graded 9x -module M is the Rees module of a filtered Px -module
if and only if it has no z-torsion.

Graded Zx-modules without z-torsion are called strict. Since Speck[z] is one-
dimensional, this condition is equivalent to flatness over k[z].

Proof. Tt is easy to see that a graded Zx-module of the form RpM does not have
any z-torsion. Let us prove the converse. Suppose for the time being that M is
any graded left Zx-module. Define

M=M/(z-1)M,

which is a left module over Zx /Zx (2—1) = Px. The image of the k-th graded piece

M,, defines a subsheaf FM C M, with the property that F;9Px - FyM C Fj ;M.

It follows that the Rees module RpM is a graded @X—module without z-torsion.
Now we have a morphism of graded Zx-modules

©: M — RFM,

that takes My to FiM; by construction, this morphism is surjective. One checks
that ker ¢ consists exactly of those sections of M that are killed by some power of
z. In particular, ¢ is an isomorphism whenever M does not have any z-torsion. [

Functors for Rees modules. One can define all the usual functors for Z-modules
also for modules over the larger algebra 2. The two functor we need are the direct
image functor and the duality functor. Given a morphism f: X — Y, we define
the transfer module

Dxy = Ox Qf-10y 19y
by the same formula as for Z-modules. It is again a (@X, ffléy)—bimodule. We
can then define the direct image functor

F(0) = RE(= B Fxy): DL GF) = Db (FF)

g9,q¢

between the derived categories of quasi-coherent graded right Z-modules. As in the
case of Z-modules, one can use induced Z-modules to show that the direct image
by a proper morphism preserves coherence.

If we specialize to z = 1, for example, by taking the (derived) tensor product
with 2/ (z — 1), we recover the usual direct image functor for right Z-modules.
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On the other hand, we can specialize to z = 0, by taking the (derived) tensor
product with Z/%z. This gives us a functor

gr’: D} (2%) = D} o(&r” 7x),

g.qc
with takes a Rees module of the form RpM to the associated graded module grf’ M.
By computing what happens to the transfer module, one checks that the following
diagram is commutative:

50 f+ =0
D!l; QC(‘@XP> D_zl; qc(-@Yp)

[ Jo

Db (erf9x) —— Db (erf Dy)

g9,4q¢ g,qc¢

Here the arrow on the bottom is the functor

L
Rf.(— @gray [*(er" Dy)): D) . (er" Dx) — D} ,.(er" Dy).

If we forget about the grading, then quasi-coherent sheaves of grf’Zx-modules are
the same thing as quasi-coherent sheaves of O« x-modules on the cotangent bundle.
The geometric interpretation of the above functor is then

R(p2): o L(df)*: Dgo(Or-x) = Dyo(Or-y),

where the morphisms between cotangent bundles are as in the diagram below.
X xy Ty =2 X

2

™Y
The direct image functor for Rees modules therefore interpolates between the usual
direct image functor for Z-modules, and the natural functor on the level of cotan-
gent bundles. One subtle point is that even if we start from a Rees module RpM,
the direct image )
f+(RFM) € Dg qc(‘@l(;p)

might have z-torsion (= not be strict). If that happens, it means that f (RpM)
has more cohomology that the complex of right Zy-modules fi M. (The extra
cohomology is z-torsion, of course.) Equivalently, it means that the complex of
graded grf’ &y -modules

RS (" M Sy [ (& Ty )
has some additional cohomology that is not visible to the direct image f M of the
underlying Z-module.
One can also define a duality functor for Z-modules. As with Z-modules, the
tensor product wx Doy QX has two commuting structures of right @X modules. If
M is a right Zx-module, then

Homg (M,wx @6y Ix)

still has the structure of a right Px-module. Passing to derived categories, we
obtain the (contravariant) duality functor

Dx = RHomg (— wx ®oyx Ix)n]: D}, (23) = Db (DF).

g qc 9,q¢
Here [n] means shifting to the left by n = dim X steps. If we specialize to z = 1, we
recover the usual duality functor for Zx-modules; if we specialize instead to z = 0,

we obtain the functor

RHomng@x (_an Rox ng@X)[ } DS qc(ng'@X> — Dz qc(ng@X)op
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We can again express this in geometric terms: if ¢ denotes the coherent sheaf on
T*X corresponding to gr’” M, then the above functor is

RHome,.  (¥4,p"wx)[n],

where p: T*X — X is the projection. As before, Dx (RprM) can acquire z-torsion.
For instance, suppose that M is a holonomic right Zx-module. Then

RHomg, (M,wx @6, Zx)n]

only has cohomology in degree zero (where we get the holonomic dual M*). But
the complex Dx(RrpM) might have cohomology in other degrees as well (which
will then be z-torsion). In fact, one can show that Dx (Rrp.M) is again strict if and
only if the complex

RHomgr g, (gr" M,wx ®o, gr¥ Zx)[n]

only has cohomology in degree zero; in commutative algebra terminology, this is
equivalent to grf’ M being a Cohen-Macaulay module over grf’ Zy.

Hodge modules. You can think of Hodge modules as being a special class of
filtered Z-modules that behave well under the various functors. More precisely, a
Hodge module on a nonsingular algebraic variety X is a (regular holonomic) right
P x-module M together with a good filtration Fe M. There is some extra data,
too, and several very restrictive conditions have to be satisfied, which make sure
that the pair (M, Fe M) comes from a polarizable variation of Hodge structure.

Ezample 26.7. The pair (wx, Fewx ), with the filtration defined by F_,,_qjwx =0
and F_,wx = wy, is an example of a Hodge module. That this is so is a deep
theorem by Morihiko Saito, who created this theory.

For our purposes, the following three facts are important. (Again, all three are
difficult theorems due to Saito.) First, if (M, Fe M) is a Hodge module on X, and
if f: X = Y is a proper morphism between nonsingular algebraic varieties, then all
cohomology modules of the complex f (RpM) are strict, and the resulting filtered
Py-modules are again Hodge modules on Y. In particular, we can compute their
associated graded modules:

. . L
grf "I f M= RIf, (ng/\/l QgrF 9y f*(gI‘ng».

Second, the duality functor preserves Hodge modules: the complex Dx (Rp M) only
has cohomology in degree zero, which is strict, and the resulting filtered Zx-module
(M, Fy M) is again a Hodge module on X. Once again, this means that we can
compute the associated graded module:

grf M' 2 R"Homgr o, (1" M, wx ®oy gr” D).

Third, Hodge modules on projective varieties satisfy a vanishing theorem similar to
the Kodaira vanishing theorem. Given a Hodge module (M, Fe M), we can form
the Spencer complex

sp(M):[M®/TL\yX—>--.—>M®9X—>M}

which lives in degrees —n, ..., 0. (Since M is regular holonomic, Sp(M) is actually
a perverse sheaf, by Kashiwara’s theorem.) The Spencer complex is filtered by the
family of subcomplexes

FeSp(M) = [FoaM @ \ Tx -+ = FiMe Tx - B,
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and the k-th subquotient

gri Sp(M) = [grinM @ \Ix = = grf JMe Tx — grf M

is a complex of coherent &x-modules. For example, for the pair (wx, Fewx ), the
Spencer complex is the holomorphic de Rham complex, and the (—p)-th subquotient
is Q% , placed in degree n — p.

Theorem 26.8 (Saito’s vanishing theorem). Let X be a nonsingular projective
variety, and L an ample line bundle. If (M, FeM) is a Hodge module on X, then

Hi(X, gri Sp(M) ® L) =0 for everyi >0,
H"(X7 gri Sp(M) ® L_l) =0 for everyi<0.

Hodge modules on abelian varieties. Let us now return to abelian varieties.
Suppose that A is an abelian variety and L an ample line bundle on A. Since the
tangent bundle of A is trivial, one can prove a much stronger vanishing theorem.
Let me explain how this works. Fix a Hodge module (M, Fe M) on A, and for
simplicity, suppose that F_1 M = 0 and FyM # 0. Then

grg Sp(M) = gri M,
and so Saito’s vanishing theorem gives
(26.9) HY(A,grfM®L)=0 foralli>0.
The next subquotient of the Spencer complex is
grf'Sp(M) = [groFM ® Ta — grf/\/t}.
Since T4 = ﬁi‘?g, where g = dim A, the term gri’ M ® 74 has no higher cohomology
by (26.9). On the other hand, the vanishing theorem says that
H'(A,gr{Sp(M)® L) =0 for all i > 0.
If we put these two facts together, we find that

(26.10) Hi(A,grfM®L)=0 foralli>D0.
Continuing in this manner, we arrive at the conclusion that
(26.11) HY(A,grf M®L) =0 foralli>0,

and so all graded quotients gr,f M satisfy the same Kodaira-type vanishing theorem.

Now recall that T*A = A x W, where W = H°(A, Q). The vanishing theorem
can be used to produce torsion-free sheaves on W. Suppose that (M, FeM) is a
Hodge module on A. Denote by ¢ the coherent sheaf on the cotangent bundle
corresponding to the associated graded module grf’ M. Also let p;: A x W — A
and py: A X W — W be the two projections.

Lemma 26.12. If L is an ample line bundle on A, then (p2)«(¥ ®p{L’1) is a
torsion-free coherent sheaf on W.

Proof. Coherence is clear (because ps is proper). Let us first analyze what happens
when we tensor by L instead of L~!. The higher direct images sheaves

R'(p2)«(% @ piL)
are coherent, and since W is affine, we have
H°(W,R'(p2)+(9 @ piL)) = H' (A x W, 9 @ p{L) = H' (A, (p1).4 ® L).

This vanishes for every i > 0 because of (26.11) and the fact that (p;).¥ = grf’ M.
The conclusion is that the complex

R(p2)+(4 @ piL)
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is actually a single coherent sheaf in degree zero.

Now let us turn to the sheaf (ps). (¢ @piL~1). If we apply Grothendieck duality
for the proper morphism p,, we get
RHom gy, (R(p2)«(4 @ piL "), Ow) = R(pa).RHome, .\, (4 © pi L', pjwalgl),

since the relative dualizing sheaf is w g w/w = pjwa. We can rewrite the right-hand
side in the more compact form

R(p2)(¢' @ piL),
where we have introduced the new complex
Y =RHome,,., (4, piwa)lg).

We can now use the results about the duality functor. They imply that ¢’ is actually
a coherent sheaf; more precisely, we have Dx (RpM) = Rp M’ for a Hodge module
(M, F,M’), and 9’ is the coherent sheaf associated to grf’M’. According to the
discussion above,

RHome,, (R(p2)(4 @ pi L"), Ow) = (p2)« (9" @ piL)
is therefore a coherent sheaf in degree zero. After dualizing again, we get

(p2)«(¢ @ piL™") = Home,, ((p2)(4' @ piL), Ow),

which is reflexive, hence torsion-free. O
Exercise.

Ezercise 26.1. Let M be a coherent graded left Zx-module. Define M = M/ (z —
I)M, and let Fj, M be the image of M.
(a) Show that Fe M is a good filtration.
(b) Show that the kernel of the morphism p: M — RpM consists exactly of
those sections that are killed by some power of z.



