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Lecture 26: May 10

One-forms on varieties of general type. In the final two lectures, I am going to
show you an application of D-module theory to a problem in algebraic geometry. It
has to do with holomorphic one-forms and their zero loci. Recall that on a smooth
projective curve of genus g � 1, every holomorphic one-form has exactly 2g � 2
zeros, counted with multiplicity. The situation for surfaces is less clear, but one
can still show that every holomorphic one-form on a surface of general type must
have a non-empty zero locus. (We’ll see a proof of this fact in a second.) This
lead Christopher Hacon and Sándor Kovács (and, independently, Tie Luo and Qi
Zhang) to conjecture that the same result should hold on any variety of general
type; they also proved their conjecture for threefolds. A few years ago, Mihnea
Popa and I used D-modules to prove the conjecture in general. The proof I am
going to present is a simplified version of our original argument that Chuanhao Wei
and I found sometime afterwards.

Theorem 26.1. Let X be a smooth projective variety over the complex numbers.
If X is of general type, then every holomorphic one-form on X has a non-empty
zero locus.

To be precise, for any ! 2 H
0(X,⌦1

X), we define the zero locus to be

Z(!) =
�
x 2 X

�� !(TxX) = 0
 
.

Then the theorem is claiming that if X is of general type, in the sense that
dimH

0(X,!
m
X ) grows like a constant times m

dimX , then necessarily Z(!) 6= ;

for every ! 2 H
0(X,⌦1

X). Another motivation for thinking that this might be true
is that one-forms are dual to vector fields, and zero loci of vector fields are of course
related to the topology of X. (For example, if X admits an everywhere nonzero
vector field, then its Euler characteristic must be zero.)

Example 26.2. Let us consider the case of surfaces. Suppose that X is a smooth
projective surface of general type. Suppose that there was a holomorphic one-form
! 2 H

0(X,⌦1
X) with empty zero locus. We will use some of the many numerical

identities for surfaces to produce a contradiction.
First, we observe that X must be minimal. Otherwise, X would be the blowup

of a smooth projective surface Y at some point, and since H0(X,⌦1
X) ⇠= H

0(Y,⌦1
Y ),

the one-form ! would be the pullback of a one-form from Y . But then ! has to
vanish at some point of the exceptional divisor, contradiction. Now the fact that X
is a of general type means that c1(X)2 � 1; together with the Bogomolov-Miyaoka-
Yau inequality, we get

3c2(X) � c1(X)2 � 1.

But c2(X) is the topological Euler characteristic of X, and so e(X) 6= 0.
Now the contradiction comes from the fact that a surface with a nowhere vanish-

ing holomorphic one-form must have e(X) = 0. To see this, consider the complex

0 OX ⌦1
X ⌦2

X 0! !

where the di↵erential is wedge product with !. This is a Koszul complex, and
since Z(!) = ;, the complex is exact, and so its hypercohomology is trivial. The
hypercohomology spectral sequence

E
p,q
1 = H

q(X,⌦p
X)
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therefore converges to zero. This gives

e(X) =
X

p,q

(�1)p+q dimH
q(X,⌦p

X) =
X

p,q

(�1)p+q dimE
p,q
1

=
X

p,q

(�1)p+q dimE
p,q
1 = 0,

since the alternating sum of the dimensions is preserved under taking cohomology.

Let us make a few general observations about Theorem 26.1. The condition that
X is of general type can be restated as follows: for any ample line bundle L on X,
there is some m � 1 such that !m

X ⌦ L
�1 has a section.

Example 26.3. In the special case m = 1, we can use the Nakano vanishing theorem
to give a simple proof of Theorem 26.1. Suppose that H

0(X,!X ⌦ L
�1) 6= 0,

and that there is a holomorphic one-form ! 2 H
0(X,⌦1

X) with Z(!) = ;. Let
n = dimX. As before, the complex

0 OX ⌦1
X · · · ⌦n

X 0! ! !

is exact, and so the hypercohomology spectral sequence

E
p,q
1 = H

q(X,⌦p
X ⌦ L

�1)

converges to zero. Since L is ample, the Nakano vanishing theorem tells us that
E

p,q
1 = 0 for p+ q < n. In particular, all the di↵erentials going into the term in the

position (n, 0) vanish. But then

E
n,0
1 = E

n,0
1 = H

0(X,!X ⌦ L
�1) 6= 0,

which is a contradiction. Unfortunately, this simple argument totally breaks down
once m � 2. But we will see that it is still basically a vanishing theorem that is
responsible for Theorem 26.1.

Another observation is that holomorphic one-forms are closely related to abelian
varieties. Indeed, we always have the Albanese mapping

alb: X ! Alb(X) = H
0(X,⌦1

X)⇤/H1(X,Z)

to an abelian variety of dimension h
0(X,⌦1

X), and by construction,

H
0(X,⌦1

X) ⇠= H
0
�
Alb(X),⌦1

Alb(X)

�
.

It thus makes sense to consider more generally an arbitrary morphism f : X ! A

to an abelian variety A, and to ask about the zero loci of the holomorphic one-
forms f⇤

!, for ! 2 H
0(A,⌦1

A). Of course, we should replace the assumption “X of
general type” by the condition that !m

X ⌦ f
⇤
L
�1 has sections for m � 1, where L

is an ample line bundle on A. This suggests the following more general result.

Theorem 26.4. Let f : X ! A be a morphism from a smooth projective variety
to an abelian variety. If H0(X,!

m
X ⌦ f

⇤
L
�1) 6= 0 for some m � 1 and some ample

line bundle L on A, then one has Z(f⇤
!) 6= ; for every ! 2 H

0(A,⌦1
A).

Set W = H
0(A,⌦1

A), and consider the incidence variety

Zf =
�
(x,!) 2 X ⇥W

�� x 2 Z(f⇤
!)

 
✓ X ⇥W.

The theorem is claiming that the second projection p2 : Zf ! W is surjective.
Since A is an abelian variety, we have T

⇤
A = A⇥W , and so the usual diagram of

morphisms between cotangent bundles becomes:

X ⇥W T
⇤
X

A⇥W

df

f⇥id
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With this notation, we have Zf = df
�1(0). When we looked at direct images for

D-modules (in Lecture 13), we encountered the set

Sf = (f ⇥ id)
�
df �1(0)

�
= (f ⇥ id)(Zf ).

It contains the characteristic varieties of the direct image D-modules Hj
f+!X . (In

Lecture 13, we proved this for closed embeddings.) Concretely,

Sf =
�
(a,!) 2 A⇥W

�� f�1(a) \ Z(f⇤
!) 6= ;

 
,

and so Z(f⇤
!) 6= ; for every ! 2 W is equivalent to the surjectivity of p2 : Sf ! W .

This suggests the following strategy for proving Theorem 26.4: find a DA-module
whose characteristic variety Ch(M) is contained in the set Sf , and then use results
about D-modules to show that p2 : Ch(M) ! W must be onto.

We could not actually get this idea to work, but we found a good replacement
for it, based on work of Viehweg and Zuo. Here is a rought outline for the proof of
Theorem 26.4. On the cotangent bundle T

⇤
A = A⇥W , we construct a morphism

F ! G between two coherent sheaves, with the following three properties:

(a) The support of F is contained in the set Sf .
(b) The induced morphism H

0(A⇥W,F ) ! H
0(A⇥W,G ) is nontrivial.

(c) The coherent sheaf (p2)⇤G on W is torsion-free.

Here p1 : A ⇥ W ! A and p2 : A ⇥ W ! W are the two projections. We will see
next time that G is (almost) the coherent sheaf coming from a DA-module M with
a good filtration F•M.

Lemma 26.5. Such a morphism F ! G can only exist if p2(Sf ) = W .

Proof. Consider the induced morphism

(p2)⇤F ! (p2)⇤G .

Both sheaves are coherent (by properness of p2), and the support of (p2)⇤F is
contained in the set p2(Sf ). Now suppose that p2(Sf ) 6= W . Then (p2)⇤F is a
torsion sheaf, and so the morphism to the torsion-free sheaf (p2)⇤G must be trivial.
Taking global sections, we find that

H
0(A⇥W,F ) = H

0
�
W, (p2)⇤F

�
! H

0
�
W, (p2)⇤G

�
= H

0(A⇥W,G )

is trivial; but this is a contradiction. ⇤
Filtered D-modules and the Rees construction. For the proof of Theo-
rem 26.4, it is important to work with pairs (M, F•M), where M is a coherent
D-module, and F•M a good filtration. Here the filtration is not just a tool to
study D-modules, but an essential piece of data. One can define the direct image
and duality functors for filtered D-modules by analogy with the unfiltered case, as
follows.

Let X be a nonsingular algebraic variety over a field k (of characteristic zero).
We can combine DX with its order filtration F•DX into a single sheaf of algebras

D̃X =
1M

k=0

FkDX ,

called the Rees algebra of DX . This is a sheaf of non-commutative graded algebras,
with multiplication defined in the obvious way. We denote by z 2 D̃X,1 the image
of 1 2 F1DX ; then D̃X contains a copy of OX [z]. It is easy to see that

D̃X/D̃X(z � z0) ⇠= DX

for every z0 6= 0, because in the quotient, each FkDX gets identified with its image
in Fk+1DX . Likewise,

D̃X/D̃Xz ⇠= grFDX ,
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because in the quotient, the image of FkDX in Fk+1DX goes to zero. We can
therefore think of the Rees algebra D̃X as a family of algebras over the a�ne line
Spec k[z], in which DX deforms into grFDX .

Given a coherent left (or right) DX -module M and a good filtration F•M, we
can form the Rees module

M̃ = RFM =
M

k2Z
FkM.

This is a graded left (or right) module over D̃X in the obvious way; since the
filtration is good, M̃ is coherent over D̃X . As before, one checks that

M̃/(z � z0)M̃ ⇠= M

for every z0 6= 0, whereas

M̃/zM̃ ⇠= grFM.

An important point is that not every graded D̃X -module comes from a filtered
DX -module.

Lemma 26.6. A graded D̃X-module M̃ is the Rees module of a filtered DX-module
if and only if it has no z-torsion.

Graded D̃X -modules without z-torsion are called strict. Since Spec k[z] is one-
dimensional, this condition is equivalent to flatness over k[z].

Proof. It is easy to see that a graded D̃X -module of the form RFM does not have
any z-torsion. Let us prove the converse. Suppose for the time being that M̃ is
any graded left D̃X -module. Define

M = M̃/(z � 1)M̃,

which is a left module over D̃X/D̃X(z�1) ⇠= DX . The image of the k-th graded piece
M̃k defines a subsheaf FkM ✓ M, with the property that FjDX ·FkM ✓ Fj+kM.
It follows that the Rees module RFM is a graded D̃X -module without z-torsion.

Now we have a morphism of graded D̃X -modules

' : M̃ ! RFM,

that takes M̃k to FkM; by construction, this morphism is surjective. One checks
that ker' consists exactly of those sections of M̃ that are killed by some power of
z. In particular, ' is an isomorphism whenever M̃ does not have any z-torsion. ⇤

Functors for Rees modules. One can define all the usual functors for D-modules
also for modules over the larger algebra D̃ . The two functor we need are the direct
image functor and the duality functor. Given a morphism f : X ! Y , we define
the transfer module

D̃X!Y = OX ⌦f�1OY
f
�1

D̃Y

by the same formula as for D-modules. It is again a (D̃X , f
�1

D̃Y )-bimodule. We
can then define the direct image functor

f+(�) = Rf⇤
�
�

L
⌦

D̃X
D̃X!Y

�
: Db

g,qc(D̃
op
X ) ! D

b
g,qc(D̃

op
Y )

between the derived categories of quasi-coherent graded right D̃-modules. As in the
case of D-modules, one can use induced D̃-modules to show that the direct image
by a proper morphism preserves coherence.

If we specialize to z = 1, for example, by taking the (derived) tensor product
with D̃/D̃(z � 1), we recover the usual direct image functor for right D-modules.
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On the other hand, we can specialize to z = 0, by taking the (derived) tensor
product with D̃/D̃z. This gives us a functor

grF : Db
g,qc(D̃

op
X ) ! D

b
g,qc(gr

F
DX),

with takes a Rees module of the form RFM to the associated graded module grFM.
By computing what happens to the transfer module, one checks that the following
diagram is commutative:

D
b
g,qc(D̃

op
X ) D

b
g,qc(D̃

op
Y )

D
b
g,qc(gr

F
DX) D

b
g,qc(gr

F
DY )

f+

grF grF

Here the arrow on the bottom is the functor

Rf⇤
�
�

L
⌦grF DX

f
⇤(grFDY )

�
: Db

g,qc(gr
F
DX) ! D

b
g,qc(gr

F
DY ).

If we forget about the grading, then quasi-coherent sheaves of grFDX -modules are
the same thing as quasi-coherent sheaves of OT⇤X -modules on the cotangent bundle.
The geometric interpretation of the above functor is then

R(p2)⇤ � L(df )
⇤ : Db

qc(OT⇤X) ! D
b
qc(OT⇤Y ),

where the morphisms between cotangent bundles are as in the diagram below.

X ⇥Y T
⇤
Y T

⇤
X

T
⇤
Y

p2

df

The direct image functor for Rees modules therefore interpolates between the usual
direct image functor for D-modules, and the natural functor on the level of cotan-
gent bundles. One subtle point is that even if we start from a Rees module RFM,
the direct image

f+(RFM) 2 D
b
g,qc(D̃

op
Y )

might have z-torsion (= not be strict). If that happens, it means that f+(RFM)
has more cohomology that the complex of right DY -modules f+M. (The extra
cohomology is z-torsion, of course.) Equivalently, it means that the complex of
graded grFDY -modules

Rf⇤
�
grFM

L
⌦grF DX

f
⇤(grFDY )

�

has some additional cohomology that is not visible to the direct image f+M of the
underlying D-module.

One can also define a duality functor for D̃-modules. As with D-modules, the
tensor product !X ⌦OX D̃X has two commuting structures of right D̃X -modules. If
M̃ is a right D̃X -module, then

Hom
D̃X

(M̃,!X ⌦OX D̃X)

still has the structure of a right D̃X -module. Passing to derived categories, we
obtain the (contravariant) duality functor

DX = RHom
D̃X

(�,!X ⌦OX D̃X)[n] : Db
g,qc(D̃

op
X ) ! D

b
g,qc(D̃

op
X )op .

Here [n] means shifting to the left by n = dimX steps. If we specialize to z = 1, we
recover the usual duality functor for DX -modules; if we specialize instead to z = 0,
we obtain the functor

RHomgrF DX
(�,!X ⌦OX grFDX)[n] : Db

g,qc(gr
F
DX) ! D

b
g,qc(gr

F
DX)op .
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We can again express this in geometric terms: if G denotes the coherent sheaf on
T

⇤
X corresponding to grFM, then the above functor is

RHomOT⇤X
(G , p

⇤
!X)[n],

where p : T ⇤
X ! X is the projection. As before, DX(RFM) can acquire z-torsion.

For instance, suppose that M is a holonomic right DX -module. Then

RHomDX (M,!X ⌦OX DX)[n]

only has cohomology in degree zero (where we get the holonomic dual M⇤). But
the complex DX(RFM) might have cohomology in other degrees as well (which
will then be z-torsion). In fact, one can show that DX(RFM) is again strict if and
only if the complex

RHomgrF DX
(grFM,!X ⌦OX grFDX)[n]

only has cohomology in degree zero; in commutative algebra terminology, this is
equivalent to grFM being a Cohen-Macaulay module over grFDX .

Hodge modules. You can think of Hodge modules as being a special class of
filtered D-modules that behave well under the various functors. More precisely, a
Hodge module on a nonsingular algebraic variety X is a (regular holonomic) right
DX -module M together with a good filtration F•M. There is some extra data,
too, and several very restrictive conditions have to be satisfied, which make sure
that the pair (M, F•M) comes from a polarizable variation of Hodge structure.

Example 26.7. The pair (!X , F•!X), with the filtration defined by F�n�1!X = 0
and F�n!X = !X , is an example of a Hodge module. That this is so is a deep
theorem by Morihiko Saito, who created this theory.

For our purposes, the following three facts are important. (Again, all three are
di�cult theorems due to Saito.) First, if (M, F•M) is a Hodge module on X, and
if f : X ! Y is a proper morphism between nonsingular algebraic varieties, then all
cohomology modules of the complex f+(RFM) are strict, and the resulting filtered
DY -modules are again Hodge modules on Y . In particular, we can compute their
associated graded modules:

grFHj
f+M

⇠= R
j
f⇤
�
grFM

L
⌦grF DX

f
⇤(grFDY )

�
.

Second, the duality functor preserves Hodge modules: the complex DX(RFM) only
has cohomology in degree zero, which is strict, and the resulting filtered DX -module
(M0

, F•M
0) is again a Hodge module on X. Once again, this means that we can

compute the associated graded module:

grFM0 ⇠= R
n
HomgrF DX

(grFM,!X ⌦OX grFDX).

Third, Hodge modules on projective varieties satisfy a vanishing theorem similar to
the Kodaira vanishing theorem. Given a Hodge module (M, F•M), we can form
the Spencer complex

Sp(M) =
h
M⌦

n̂

TX ! · · · ! M⌦ TX ! M

i

which lives in degrees �n, . . . , 0. (Since M is regular holonomic, Sp(M) is actually
a perverse sheaf, by Kashiwara’s theorem.) The Spencer complex is filtered by the
family of subcomplexes

Fk Sp(M) =
h
Fk�nM⌦

n̂

TX ! · · · ! Fk�1M⌦ TX ! FkM

i
,
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and the k-th subquotient

grFk Sp(M) =
h
grFk�nM⌦

n̂

TX ! · · · ! grFk�1M⌦ TX ! grFk M
i

is a complex of coherent OX -modules. For example, for the pair (!X , F•!X), the
Spencer complex is the holomorphic de Rham complex, and the (�p)-th subquotient
is ⌦p

X , placed in degree n� p.

Theorem 26.8 (Saito’s vanishing theorem). Let X be a nonsingular projective
variety, and L an ample line bundle. If (M, F•M) is a Hodge module on X, then

H
i
�
X, grFk Sp(M)⌦ L

�
= 0 for every i > 0,

H
i
�
X, grFk Sp(M)⌦ L

�1
�
= 0 for every i < 0.

Hodge modules on abelian varieties. Let us now return to abelian varieties.
Suppose that A is an abelian variety and L an ample line bundle on A. Since the
tangent bundle of A is trivial, one can prove a much stronger vanishing theorem.
Let me explain how this works. Fix a Hodge module (M, F•M) on A, and for
simplicity, suppose that F�1M = 0 and F0M 6= 0. Then

grF0 Sp(M) = grF0 M,

and so Saito’s vanishing theorem gives

(26.9) H
i(A, grF0 M⌦ L) = 0 for all i > 0.

The next subquotient of the Spencer complex is

grF1 Sp(M) =
h
grF0 M⌦ TA ! grF1 M

i
.

Since TA
⇠= O

�g
A , where g = dimA, the term grF0 M⌦TA has no higher cohomology

by (26.9). On the other hand, the vanishing theorem says that

H
i
�
A, grF1 Sp(M)⌦ L

�
= 0 for all i > 0.

If we put these two facts together, we find that

(26.10) H
i(A, grF1 M⌦ L) = 0 for all i > 0.

Continuing in this manner, we arrive at the conclusion that

(26.11) H
i(A, grFk M⌦ L) = 0 for all i > 0,

and so all graded quotients grFk M satisfy the same Kodaira-type vanishing theorem.
Now recall that T ⇤

A = A⇥W , where W = H
0(A,⌦1

A). The vanishing theorem
can be used to produce torsion-free sheaves on W . Suppose that (M, F•M) is a
Hodge module on A. Denote by G the coherent sheaf on the cotangent bundle
corresponding to the associated graded module grFM. Also let p1 : A ⇥ W ! A

and p2 : A⇥W ! W be the two projections.

Lemma 26.12. If L is an ample line bundle on A, then (p2)⇤(G ⌦ p
⇤
1L

�1
�
is a

torsion-free coherent sheaf on W .

Proof. Coherence is clear (because p2 is proper). Let us first analyze what happens
when we tensor by L instead of L�1. The higher direct images sheaves

R
i(p2)⇤(G ⌦ p

⇤
1L)

are coherent, and since W is a�ne, we have

H
0
�
W,R

i(p2)⇤(G ⌦ p
⇤
1L)

�
= H

i
�
A⇥W,G ⌦ p

⇤
1L
�
= H

i
�
A, (p1)⇤G ⌦ L

�
.

This vanishes for every i > 0 because of (26.11) and the fact that (p1)⇤G = grFM.
The conclusion is that the complex

R(p2)⇤(G ⌦ p
⇤
1L)
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is actually a single coherent sheaf in degree zero.
Now let us turn to the sheaf (p2)⇤(G ⌦p

⇤
1L

�1). If we apply Grothendieck duality
for the proper morphism p2, we get

RHomOW

�
R(p2)⇤(G ⌦ p

⇤
1L

�1),OW

�
⇠= R(p2)⇤RHomOA⇥W

�
G ⌦ p

⇤
1L

�1
, p

⇤
1!A[g]

�
,

since the relative dualizing sheaf is !A⇥W/W = p
⇤
1!A. We can rewrite the right-hand

side in the more compact form

R(p2)⇤(G
0
⌦ p

⇤
1L),

where we have introduced the new complex

G
0 = RHomOA⇥W (G , p

⇤
1!A)[g].

We can now use the results about the duality functor. They imply that G
0 is actually

a coherent sheaf; more precisely, we have DX(RFM) = RFM
0 for a Hodge module

(M0
, F•M

0), and G
0 is the coherent sheaf associated to grFM0. According to the

discussion above,

RHomOW

�
R(p2)⇤(G ⌦ p

⇤
1L

�1),OW

�
⇠= (p2)⇤

�
G

0
⌦ p

⇤
1L
�

is therefore a coherent sheaf in degree zero. After dualizing again, we get

(p2)⇤(G ⌦ p
⇤
1L

�1) ⇠= HomOW

�
(p2)⇤(G

0
⌦ p

⇤
1L),OW

�
,

which is reflexive, hence torsion-free. ⇤
Exercise.

Exercise 26.1. Let M̃ be a coherent graded left D̃X -module. Define M = M̃/(z�
1)M̃, and let FkM be the image of M̃k.

(a) Show that F•M is a good filtration.
(b) Show that the kernel of the morphism ' : M̃ ! RFM consists exactly of

those sections that are killed by some power of z.


