Lecture 26: May 10

One-forms on varieties of general type. In the final two lectures, I am going to show you an application of \mathscr{D}-module theory to a problem in algebraic geometry. It has to do with holomorphic one-forms and their zero loci. Recall that on a smooth projective curve of genus $g \geq 1$, every holomorphic one-form has exactly $2 g-2$ zeros, counted with multiplicity. The situation for surfaces is less clear, but one can still show that every holomorphic one-form on a surface of general type must have a non-empty zero locus. (We'll see a proof of this fact in a second.) This lead Christopher Hacon and Sándor Kovács (and, independently, Tie Luo and Qi Zhang) to conjecture that the same result should hold on any variety of general type; they also proved their conjecture for threefolds. A few years ago, Mihnea Popa and I used \mathscr{D}-modules to prove the conjecture in general. The proof I am going to present is a simplified version of our original argument that Chuanhao Wei and I found sometime afterwards.

Theorem 26.1. Let X be a smooth projective variety over the complex numbers. If X is of general type, then every holomorphic one-form on X has a non-empty zero locus.

To be precise, for any $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right)$, we define the zero locus to be

$$
Z(\omega)=\left\{x \in X \mid \omega\left(T_{x} X\right)=0\right\} .
$$

Then the theorem is claiming that if X is of general type, in the sense that $\operatorname{dim} H^{0}\left(X, \omega_{X}^{m}\right)$ grows like a constant times $m^{\operatorname{dim} X}$, then necessarily $Z(\omega) \neq \emptyset$ for every $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right)$. Another motivation for thinking that this might be true is that one-forms are dual to vector fields, and zero loci of vector fields are of course related to the topology of X. (For example, if X admits an everywhere nonzero vector field, then its Euler characteristic must be zero.)

Example 26.2. Let us consider the case of surfaces. Suppose that X is a smooth projective surface of general type. Suppose that there was a holomorphic one-form $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right)$ with empty zero locus. We will use some of the many numerical identities for surfaces to produce a contradiction.

First, we observe that X must be minimal. Otherwise, X would be the blowup of a smooth projective surface Y at some point, and since $H^{0}\left(X, \Omega_{X}^{1}\right) \cong H^{0}\left(Y, \Omega_{Y}^{1}\right)$, the one-form ω would be the pullback of a one-form from Y. But then ω has to vanish at some point of the exceptional divisor, contradiction. Now the fact that X is a of general type means that $c_{1}(X)^{2} \geq 1$; together with the Bogomolov-MiyaokaYau inequality, we get

$$
3 c_{2}(X) \geq c_{1}(X)^{2} \geq 1
$$

But $c_{2}(X)$ is the topological Euler characteristic of X, and so $e(X) \neq 0$.
Now the contradiction comes from the fact that a surface with a nowhere vanishing holomorphic one-form must have $e(X)=0$. To see this, consider the complex

$$
0 \rightarrow \mathscr{O}_{X} \xrightarrow{\omega} \Omega_{X}^{1} \xrightarrow{\omega} \Omega_{X}^{2} \rightarrow 0
$$

where the differential is wedge product with ω. This is a Koszul complex, and since $Z(\omega)=\emptyset$, the complex is exact, and so its hypercohomology is trivial. The hypercohomology spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(X, \Omega_{X}^{p}\right)
$$

therefore converges to zero. This gives

$$
\begin{aligned}
e(X)=\sum_{p, q}(-1)^{p+q} \operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right) & =\sum_{p, q}(-1)^{p+q} \operatorname{dim} E_{1}^{p, q} \\
& =\sum_{p, q}(-1)^{p+q} \operatorname{dim} E_{\infty}^{p, q}=0,
\end{aligned}
$$

since the alternating sum of the dimensions is preserved under taking cohomology.
Let us make a few general observations about Theorem 26.1. The condition that X is of general type can be restated as follows: for any ample line bundle L on X, there is some $m \geq 1$ such that $\omega_{X}^{m} \otimes L^{-1}$ has a section.
Example 26.3. In the special case $m=1$, we can use the Nakano vanishing theorem to give a simple proof of Theorem 26.1. Suppose that $H^{0}\left(X, \omega_{X} \otimes L^{-1}\right) \neq 0$, and that there is a holomorphic one-form $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right)$ with $Z(\omega)=\emptyset$. Let $n=\operatorname{dim} X$. As before, the complex

$$
0 \rightarrow \mathscr{O}_{X} \xrightarrow{\omega} \Omega_{X}^{1} \xrightarrow{\omega} \cdots \xrightarrow{\omega} \Omega_{X}^{n} \longrightarrow 0
$$

is exact, and so the hypercohomology spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(X, \Omega_{X}^{p} \otimes L^{-1}\right)
$$

converges to zero. Since L is ample, the Nakano vanishing theorem tells us that $E_{1}^{p, q}=0$ for $p+q<n$. In particular, all the differentials going into the term in the position $(n, 0)$ vanish. But then

$$
E_{\infty}^{n, 0}=E_{1}^{n, 0}=H^{0}\left(X, \omega_{X} \otimes L^{-1}\right) \neq 0
$$

which is a contradiction. Unfortunately, this simple argument totally breaks down once $m \geq 2$. But we will see that it is still basically a vanishing theorem that is responsible for Theorem 26.1.

Another observation is that holomorphic one-forms are closely related to abelian varieties. Indeed, we always have the Albanese mapping

$$
\operatorname{alb}: X \rightarrow \operatorname{Alb}(X)=H^{0}\left(X, \Omega_{X}^{1}\right)^{*} / H_{1}(X, \mathbb{Z})
$$

to an abelian variety of dimension $h^{0}\left(X, \Omega_{X}^{1}\right)$, and by construction,

$$
H^{0}\left(X, \Omega_{X}^{1}\right) \cong H^{0}\left(\operatorname{Alb}(X), \Omega_{\operatorname{Alb}(X)}^{1}\right)
$$

It thus makes sense to consider more generally an arbitrary morphism $f: X \rightarrow A$ to an abelian variety A, and to ask about the zero loci of the holomorphic oneforms $f^{*} \omega$, for $\omega \in H^{0}\left(A, \Omega_{A}^{1}\right)$. Of course, we should replace the assumption " X of general type" by the condition that $\omega_{X}^{m} \otimes f^{*} L^{-1}$ has sections for $m \gg 1$, where L is an ample line bundle on A. This suggests the following more general result.
Theorem 26.4. Let $f: X \rightarrow A$ be a morphism from a smooth projective variety to an abelian variety. If $H^{0}\left(X, \omega_{X}^{m} \otimes f^{*} L^{-1}\right) \neq 0$ for some $m \geq 1$ and some ample line bundle L on A, then one has $Z\left(f^{*} \omega\right) \neq \emptyset$ for every $\omega \in H^{0}\left(A, \Omega_{A}^{1}\right)$.

Set $W=H^{0}\left(A, \Omega_{A}^{1}\right)$, and consider the incidence variety

$$
Z_{f}=\left\{(x, \omega) \in X \times W \mid x \in Z\left(f^{*} \omega\right)\right\} \subseteq X \times W
$$

The theorem is claiming that the second projection $p_{2}: Z_{f} \rightarrow W$ is surjective. Since A is an abelian variety, we have $T^{*} A=A \times W$, and so the usual diagram of morphisms between cotangent bundles becomes:

$$
\begin{aligned}
& X \times W \xrightarrow{d f} T^{*} X \\
& \quad \downarrow^{f \times \mathrm{id}} \\
& A \times W
\end{aligned}
$$

With this notation, we have $Z_{f}=d f^{-1}(0)$. When we looked at direct images for \mathscr{D}-modules (in Lecture 13), we encountered the set

$$
S_{f}=(f \times \mathrm{id})\left(d f^{-1}(0)\right)=(f \times \mathrm{id})\left(Z_{f}\right) .
$$

It contains the characteristic varieties of the direct image \mathscr{D}-modules $\mathcal{H}^{j} f_{+} \omega_{X}$. (In Lecture 13, we proved this for closed embeddings.) Concretely,

$$
S_{f}=\left\{(a, \omega) \in A \times W \mid f^{-1}(a) \cap Z\left(f^{*} \omega\right) \neq \emptyset\right\}
$$

and so $Z\left(f^{*} \omega\right) \neq \emptyset$ for every $\omega \in W$ is equivalent to the surjectivity of $p_{2}: S_{f} \rightarrow W$. This suggests the following strategy for proving Theorem 26.4: find a \mathscr{D}_{A}-module whose characteristic variety $\operatorname{Ch}(\mathcal{M})$ is contained in the set S_{f}, and then use results about \mathscr{D}-modules to show that $p_{2}: \operatorname{Ch}(\mathcal{M}) \rightarrow W$ must be onto.

We could not actually get this idea to work, but we found a good replacement for it, based on work of Viehweg and Zuo. Here is a rought outline for the proof of Theorem 26.4. On the cotangent bundle $T^{*} A=A \times W$, we construct a morphism $\mathscr{F} \rightarrow \mathscr{G}$ between two coherent sheaves, with the following three properties:
(a) The support of \mathscr{F} is contained in the set S_{f}.
(b) The induced morphism $H^{0}(A \times W, \mathscr{F}) \rightarrow H^{0}(A \times W, \mathscr{G})$ is nontrivial.
(c) The coherent sheaf $\left(p_{2}\right)_{*} \mathscr{G}$ on W is torsion-free.

Here $p_{1}: A \times W \rightarrow A$ and $p_{2}: A \times W \rightarrow W$ are the two projections. We will see next time that \mathscr{G} is (almost) the coherent sheaf coming from a \mathscr{D}_{A}-module \mathcal{M} with a good filtration $F_{\bullet} \mathcal{M}$.

Lemma 26.5. Such a morphism $\mathscr{F} \rightarrow \mathscr{G}$ can only exist if $p_{2}\left(S_{f}\right)=W$.
Proof. Consider the induced morphism

$$
\left(p_{2}\right)_{*} \mathscr{F} \rightarrow\left(p_{2}\right)_{*} \mathscr{G} .
$$

Both sheaves are coherent (by properness of p_{2}), and the support of $\left(p_{2}\right)_{*} \mathscr{F}$ is contained in the set $p_{2}\left(S_{f}\right)$. Now suppose that $p_{2}\left(S_{f}\right) \neq W$. Then $\left(p_{2}\right)_{*} \mathscr{F}$ is a torsion sheaf, and so the morphism to the torsion-free sheaf $\left(p_{2}\right)_{*} \mathscr{G}$ must be trivial. Taking global sections, we find that

$$
H^{0}(A \times W, \mathscr{F})=H^{0}\left(W,\left(p_{2}\right)_{*} \mathscr{F}\right) \rightarrow H^{0}\left(W,\left(p_{2}\right)_{*} \mathscr{G}\right)=H^{0}(A \times W, \mathscr{G})
$$

is trivial; but this is a contradiction.
Filtered \mathscr{D}-modules and the Rees construction. For the proof of Theorem 26.4, it is important to work with pairs $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$, where \mathcal{M} is a coherent \mathscr{D}-module, and $F_{\bullet} \mathcal{M}$ a good filtration. Here the filtration is not just a tool to study \mathscr{D}-modules, but an essential piece of data. One can define the direct image and duality functors for filtered \mathscr{D}-modules by analogy with the unfiltered case, as follows.

Let X be a nonsingular algebraic variety over a field k (of characteristic zero). We can combine \mathscr{D}_{X} with its order filtration $F_{\bullet} \mathscr{D}_{X}$ into a single sheaf of algebras

$$
\tilde{\mathscr{D}}_{X}=\bigoplus_{k=0}^{\infty} F_{k} \mathscr{D}_{X},
$$

called the Rees algebra of \mathscr{D}_{X}. This is a sheaf of non-commutative graded algebras, with multiplication defined in the obvious way. We denote by $z \in \tilde{\mathscr{D}}_{X, 1}$ the image of $1 \in F_{1} \mathscr{D}_{X}$; then $\tilde{\mathscr{D}}_{X}$ contains a copy of $\mathscr{O}_{X}[z]$. It is easy to see that

$$
\tilde{\mathscr{D}}_{X} / \tilde{\mathscr{D}}_{X}\left(z-z_{0}\right) \cong \mathscr{D}_{X}
$$

for every $z_{0} \neq 0$, because in the quotient, each $F_{k} \mathscr{D}_{X}$ gets identified with its image in $F_{k+1} \mathscr{D}_{X}$. Likewise,

$$
\tilde{\mathscr{D}}_{X} / \tilde{\mathscr{D}}_{X} z \cong \operatorname{gr}^{F} \mathscr{D}_{X},
$$

because in the quotient, the image of $F_{k} \mathscr{D}_{X}$ in $F_{k+1} \mathscr{D}_{X}$ goes to zero. We can therefore think of the Rees algebra $\tilde{\mathscr{D}}_{X}$ as a family of algebras over the affine line Spec $k[z]$, in which \mathscr{D}_{X} deforms into $\operatorname{gr}^{F} \mathscr{D}_{X}$.

Given a coherent left (or right) \mathscr{D}_{X}-module \mathcal{M} and a good filtration $F_{\bullet} \mathcal{M}$, we can form the Rees module

$$
\tilde{\mathcal{M}}=R_{F} \mathcal{M}=\bigoplus_{k \in \mathbb{Z}} F_{k} \mathcal{M} .
$$

This is a graded left (or right) module over $\tilde{\mathscr{D}}_{X}$ in the obvious way; since the filtration is good, $\tilde{\mathcal{M}}$ is coherent over $\tilde{\mathscr{D}}_{X}$. As before, one checks that

$$
\tilde{\mathcal{M}} /\left(z-z_{0}\right) \tilde{\mathcal{M}} \cong \mathcal{M}
$$

for every $z_{0} \neq 0$, whereas

$$
\tilde{\mathcal{M}} / z \tilde{\mathcal{M}} \cong \operatorname{gr}^{F} \mathcal{M}
$$

An important point is that not every graded $\tilde{\mathscr{D}}_{X}$-module comes from a filtered \mathscr{D}_{X}-module.

Lemma 26.6. A graded $\tilde{\mathscr{D}}_{X}$-module $\tilde{\mathcal{M}}$ is the Rees module of a filtered \mathscr{D}_{X}-module if and only if it has no z-torsion.

Graded $\tilde{\mathscr{D}}_{X}$-modules without z-torsion are called strict. Since $\operatorname{Spec} k[z]$ is onedimensional, this condition is equivalent to flatness over $k[z]$.

Proof. It is easy to see that a graded $\tilde{\mathscr{D}}_{X}$-module of the form $R_{F} \mathcal{M}$ does not have any z-torsion. Let us prove the converse. Suppose for the time being that $\tilde{\mathcal{M}}$ is any graded left $\tilde{\mathscr{D}}_{X}$-module. Define

$$
\mathcal{M}=\tilde{\mathcal{M}} /(z-1) \tilde{\mathcal{M}}
$$

which is a left module over $\tilde{\mathscr{D}}_{X} / \tilde{\mathscr{D}}_{X}(z-1) \cong \mathscr{D}_{X}$. The image of the k-th graded piece $\tilde{\mathcal{M}}_{k}$ defines a subsheaf $F_{k} \mathcal{M} \subseteq \mathcal{M}$, with the property that $F_{j} \mathscr{D}_{X} \cdot F_{k} \mathcal{M} \subseteq F_{j+k} \mathcal{M}$. It follows that the Rees module $R_{F} \mathcal{M}$ is a graded $\tilde{\mathscr{D}}_{X}$-module without z-torsion.

Now we have a morphism of graded $\tilde{\mathscr{D}}_{X}$-modules

$$
\varphi: \tilde{\mathcal{M}} \rightarrow R_{F} \mathcal{M}
$$

that takes $\tilde{\mathcal{M}}_{k}$ to $F_{k} \mathcal{M}$; by construction, this morphism is surjective. One checks that $\operatorname{ker} \varphi$ consists exactly of those sections of $\tilde{\mathcal{M}}$ that are killed by some power of z. In particular, φ is an isomorphism whenever $\tilde{\mathcal{M}}$ does not have any z-torsion.

Functors for Rees modules. One can define all the usual functors for \mathscr{D}-modules also for modules over the larger algebra $\tilde{\mathscr{D}}$. The two functor we need are the direct image functor and the duality functor. Given a morphism $f: X \rightarrow Y$, we define the transfer module

$$
\tilde{\mathscr{D}}_{X \rightarrow Y}=\mathscr{O}_{X} \otimes_{f^{-1}} \mathscr{O}_{Y} f^{-1} \tilde{\mathscr{D}}_{Y}
$$

by the same formula as for \mathscr{D}-modules. It is again a $\left(\tilde{\mathscr{D}}_{X}, f^{-1} \tilde{\mathscr{D}}_{Y}\right)$-bimodule. We can then define the direct image functor

$$
f_{+}(-)=\mathbf{R} f_{*}\left(-{\stackrel{\mathbf{Q}}{\tilde{\mathscr{D}}_{X}}}^{\tilde{\mathscr{D}}_{X \rightarrow Y}}\right): D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{X}^{o p}\right) \rightarrow D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{Y}^{o p}\right)
$$

between the derived categories of quasi-coherent graded right $\tilde{\mathscr{D}}$-modules. As in the case of \mathscr{D}-modules, one can use induced $\tilde{\mathscr{D}}$-modules to show that the direct image by a proper morphism preserves coherence.

If we specialize to $z=1$, for example, by taking the (derived) tensor product with $\tilde{\mathscr{D}} / \tilde{D}(z-1)$, we recover the usual direct image functor for right \mathscr{D}-modules.

On the other hand, we can specialize to $z=0$, by taking the (derived) tensor product with $\tilde{\mathscr{D}} / \tilde{\mathscr{D}} z$. This gives us a functor

$$
\operatorname{gr}^{F}: D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{X}^{o p}\right) \rightarrow D_{g, q c}^{b}\left(\operatorname{gr}^{F} \mathscr{D}_{X}\right)
$$

with takes a Rees module of the form $R_{F} \mathcal{M}$ to the associated graded module $\mathrm{gr}^{F} \mathcal{M}$. By computing what happens to the transfer module, one checks that the following diagram is commutative:

$$
\begin{aligned}
& D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{X}^{o p}\right) \xrightarrow{f_{+}} D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{Y}^{o p}\right) \\
& \downarrow^{\mathrm{gr}^{F}} \quad \mathrm{gr}^{F} \\
& D_{g, q c}^{b}\left(\mathrm{gr}^{F} \mathscr{D}_{X}\right) \longrightarrow D_{g, q c}^{b}\left(\mathrm{gr}^{F} \mathscr{D}_{Y}\right)
\end{aligned}
$$

Here the arrow on the bottom is the functor

$$
\mathbf{R} f_{*}\left(-{\stackrel{\mathbf{Q}}{\mathrm{gr}^{F} \mathscr{D}_{X}}} f^{*}\left(\mathrm{gr}^{F} \mathscr{D}_{Y}\right)\right): D_{g, q c}^{b}\left(\operatorname{gr}^{F} \mathscr{D}_{X}\right) \rightarrow D_{g, q c}^{b}\left(\mathrm{gr}^{F} \mathscr{D}_{Y}\right)
$$

If we forget about the grading, then quasi-coherent sheaves of $\mathrm{gr}^{F} \mathscr{D}_{X}$-modules are the same thing as quasi-coherent sheaves of $\mathscr{O}_{T^{*} X}$-modules on the cotangent bundle. The geometric interpretation of the above functor is then

$$
\mathbf{R}\left(p_{2}\right)_{*} \circ \mathbf{L}(d f)^{*}: D_{q c}^{b}\left(\mathscr{O}_{T^{*} X}\right) \rightarrow D_{q c}^{b}\left(\mathscr{O}_{T^{*} Y}\right)
$$

where the morphisms between cotangent bundles are as in the diagram below.

The direct image functor for Rees modules therefore interpolates between the usual direct image functor for \mathscr{D}-modules, and the natural functor on the level of cotangent bundles. One subtle point is that even if we start from a Rees module $R_{F} \mathcal{M}$, the direct image

$$
f_{+}\left(R_{F} \mathcal{M}\right) \in D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{Y}^{o p}\right)
$$

might have z-torsion ($=$ not be strict). If that happens, it means that $f_{+}\left(R_{F} \mathcal{M}\right)$ has more cohomology that the complex of right \mathscr{D}_{Y}-modules $f_{+} \mathcal{M}$. (The extra cohomology is z-torsion, of course.) Equivalently, it means that the complex of graded $\mathrm{gr}^{F} \mathscr{D}_{Y}$-modules

$$
\mathbf{R} f_{*}\left(\operatorname{gr}^{F} \mathcal{M}{\stackrel{\mathbf{Q}}{\mathrm{gr}^{F} \mathscr{D}_{X}}} f^{*}\left(\operatorname{gr}^{F} \mathscr{D}_{Y}\right)\right)
$$

has some additional cohomology that is not visible to the direct image $f_{+} \mathcal{M}$ of the underlying \mathscr{D}-module.

One can also define a duality functor for $\tilde{\mathscr{D}}$-modules. As with \mathscr{D}-modules, the tensor product $\omega_{X} \otimes_{\mathscr{O}_{X}} \tilde{\mathscr{D}}_{X}$ has two commuting structures of right $\tilde{\mathscr{D}}_{X}$-modules. If $\tilde{\mathcal{M}}$ is a right $\tilde{\mathscr{D}}_{X}$-module, then

$$
\mathcal{H o m}_{\tilde{\mathscr{D}}_{X}}\left(\tilde{\mathcal{M}}, \omega_{X} \otimes_{\mathscr{O}_{X}} \tilde{\mathscr{D}}_{X}\right)
$$

still has the structure of a right $\tilde{\mathscr{D}}_{X}$-module. Passing to derived categories, we obtain the (contravariant) duality functor

$$
\mathbb{D}_{X}=\mathbf{R} \mathcal{H o m}_{\tilde{\mathscr{D}}_{X}}\left(-, \omega_{X} \otimes_{\mathscr{O}_{X}} \tilde{\mathscr{D}}_{X}\right)[n]: D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{X}^{o p}\right) \rightarrow D_{g, q c}^{b}\left(\tilde{\mathscr{D}}_{X}^{o p}\right)^{o p} .
$$

Here $[n]$ means shifting to the left by $n=\operatorname{dim} X$ steps. If we specialize to $z=1$, we recover the usual duality functor for \mathscr{D}_{X}-modules; if we specialize instead to $z=0$, we obtain the functor

$$
\mathbf{R} \mathcal{H o m}_{\operatorname{gr}^{F} \mathscr{D}_{X}}\left(-, \omega_{X} \otimes_{\mathscr{O}_{X}} \operatorname{gr}^{F} \mathscr{D}_{X}\right)[n]: D_{g, q c}^{b}\left(\operatorname{gr}^{F} \mathscr{D}_{X}\right) \rightarrow D_{g, q c}^{b}\left(\operatorname{gr}^{F} \mathscr{D}_{X}\right)^{o p} .
$$

We can again express this in geometric terms: if \mathscr{G} denotes the coherent sheaf on $T^{*} X$ corresponding to $\operatorname{gr}^{F} \mathcal{M}$, then the above functor is

$$
\mathbf{R} \mathcal{H o m}_{\mathscr{O}_{T^{*} X}}\left(\mathscr{G}, p^{*} \omega_{X}\right)[n],
$$

where $p: T^{*} X \rightarrow X$ is the projection. As before, $\mathbb{D}_{X}\left(R_{F} \mathcal{M}\right)$ can acquire z-torsion. For instance, suppose that \mathcal{M} is a holonomic right \mathscr{D}_{X}-module. Then

$$
\mathbf{R} \mathcal{H o m}_{\mathscr{D}_{X}}\left(\mathcal{M}, \omega_{X} \otimes_{\mathscr{O}_{X}} \mathscr{D}_{X}\right)[n]
$$

only has cohomology in degree zero (where we get the holonomic dual \mathcal{M}^{*}). But the complex $\mathbb{D}_{X}\left(R_{F} \mathcal{M}\right)$ might have cohomology in other degrees as well (which will then be z-torsion). In fact, one can show that $\mathbb{D}_{X}\left(R_{F} \mathcal{M}\right)$ is again strict if and only if the complex

$$
\mathbf{R} \mathcal{H o m}_{\operatorname{gr}^{F} \mathscr{D}_{X}}\left(\operatorname{gr}^{F} \mathcal{M}, \omega_{X} \otimes_{\mathscr{O}_{X}} \operatorname{gr}^{F} \mathscr{D}_{X}\right)[n]
$$

only has cohomology in degree zero; in commutative algebra terminology, this is equivalent to $\mathrm{gr}^{F} \mathcal{M}$ being a Cohen-Macaulay module over $\mathrm{gr}^{F} \mathscr{D}_{X}$.

Hodge modules. You can think of Hodge modules as being a special class of filtered \mathscr{D}-modules that behave well under the various functors. More precisely, a Hodge module on a nonsingular algebraic variety X is a (regular holonomic) right \mathscr{D}_{X}-module \mathcal{M} together with a good filtration $F_{\bullet} \mathcal{M}$. There is some extra data, too, and several very restrictive conditions have to be satisfied, which make sure that the pair $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ comes from a polarizable variation of Hodge structure.

Example 26.7. The pair ($\omega_{X}, F_{\bullet} \omega_{X}$), with the filtration defined by $F_{-n-1} \omega_{X}=0$ and $F_{-n} \omega_{X}=\omega_{X}$, is an example of a Hodge module. That this is so is a deep theorem by Morihiko Saito, who created this theory.

For our purposes, the following three facts are important. (Again, all three are difficult theorems due to Saito.) First, if $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ is a Hodge module on X, and if $f: X \rightarrow Y$ is a proper morphism between nonsingular algebraic varieties, then all cohomology modules of the complex $f_{+}\left(R_{F} \mathcal{M}\right)$ are strict, and the resulting filtered \mathscr{D}_{Y}-modules are again Hodge modules on Y. In particular, we can compute their associated graded modules:

$$
\operatorname{gr}^{F} \mathcal{H}^{j} f_{+} \mathcal{M} \cong R^{j} f_{*}\left(\operatorname{gr}^{F} \mathcal{M} \stackrel{\mathbf{\otimes}}{\operatorname{grr}^{F} \mathscr{D}_{X}} f^{*}\left(\operatorname{gr}^{F} \mathscr{D}_{Y}\right)\right)
$$

Second, the duality functor preserves Hodge modules: the complex $\mathbb{D}_{X}\left(R_{F} \mathcal{M}\right)$ only has cohomology in degree zero, which is strict, and the resulting filtered \mathscr{D}_{X}-module $\left(\mathcal{M}^{\prime}, F_{\bullet} \mathcal{M}^{\prime}\right)$ is again a Hodge module on X. Once again, this means that we can compute the associated graded module:

$$
\operatorname{gr}^{F} \mathcal{M}^{\prime} \cong R^{n} \mathcal{H}_{0} m_{\operatorname{gr}^{F} \mathscr{D}_{X}}\left(\operatorname{gr}^{F} \mathcal{M}, \omega_{X} \otimes_{\mathscr{O}_{X}} \operatorname{gr}^{F} \mathscr{D}_{X}\right)
$$

Third, Hodge modules on projective varieties satisfy a vanishing theorem similar to the Kodaira vanishing theorem. Given a $\operatorname{Hodge} \operatorname{module}\left(\mathcal{M}, F_{\mathbf{\bullet}} \mathcal{M}\right)$, we can form the Spencer complex

$$
\operatorname{Sp}(\mathcal{M})=\left[\mathcal{M} \otimes \bigwedge^{n} \mathscr{T}_{X} \rightarrow \cdots \rightarrow \mathcal{M} \otimes \mathscr{T}_{X} \rightarrow \mathcal{M}\right]
$$

which lives in degrees $-n, \ldots, 0$. (Since \mathcal{M} is regular holonomic, $\operatorname{Sp}(\mathcal{M})$ is actually a perverse sheaf, by Kashiwara's theorem.) The Spencer complex is filtered by the family of subcomplexes

$$
F_{k} \operatorname{Sp}(\mathcal{M})=\left[F_{k-n} \mathcal{M} \otimes \bigwedge^{n} \mathscr{T}_{X} \rightarrow \cdots \rightarrow F_{k-1} \mathcal{M} \otimes \mathscr{T}_{X} \rightarrow F_{k} \mathcal{M}\right]
$$

and the k-th subquotient

$$
\operatorname{gr}_{k}^{F} \operatorname{Sp}(\mathcal{M})=\left[\operatorname{gr}_{k-n}^{F} \mathcal{M} \otimes \bigwedge^{n} \mathscr{T}_{X} \rightarrow \cdots \rightarrow \operatorname{gr}_{k-1}^{F} \mathcal{M} \otimes \mathscr{T}_{X} \rightarrow \operatorname{gr}_{k}^{F} \mathcal{M}\right]
$$

is a complex of coherent \mathscr{O}_{X}-modules. For example, for the pair $\left(\omega_{X}, F_{\bullet} \omega_{X}\right)$, the Spencer complex is the holomorphic de Rham complex, and the $(-p)$-th subquotient is Ω_{X}^{p}, placed in degree $n-p$.

Theorem 26.8 (Saito's vanishing theorem). Let X be a nonsingular projective variety, and L an ample line bundle. If $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ is a Hodge module on X, then

$$
\begin{aligned}
& H^{i}\left(X, \operatorname{gr}_{k}^{F} \operatorname{Sp}(\mathcal{M}) \otimes L\right)=0 \\
& H^{i}\left(X, \operatorname{gr}_{k}^{F} \operatorname{Sp}(\mathcal{M}) \otimes L^{-1}\right)=0 \text { for every } i>0 \\
& \text { fory } i<0
\end{aligned}
$$

Hodge modules on abelian varieties. Let us now return to abelian varieties. Suppose that A is an abelian variety and L an ample line bundle on A. Since the tangent bundle of A is trivial, one can prove a much stronger vanishing theorem. Let me explain how this works. Fix a Hodge module $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ on A, and for simplicity, suppose that $F_{-1} \mathcal{M}=0$ and $F_{0} \mathcal{M} \neq 0$. Then

$$
\operatorname{gr}_{0}^{F} \operatorname{Sp}(\mathcal{M})=\operatorname{gr}_{0}^{F} \mathcal{M}
$$

and so Saito's vanishing theorem gives

$$
\begin{equation*}
H^{i}\left(A, \operatorname{gr}_{0}^{F} \mathcal{M} \otimes L\right)=0 \quad \text { for all } i>0 \tag{26.9}
\end{equation*}
$$

The next subquotient of the Spencer complex is

$$
\operatorname{gr}_{1}^{F} \operatorname{Sp}(\mathcal{M})=\left[\operatorname{gr}_{0}^{F} \mathcal{M} \otimes \mathscr{T}_{A} \rightarrow \operatorname{gr}_{1}^{F} \mathcal{M}\right]
$$

Since $\mathscr{T}_{A} \cong \mathscr{O}_{A}^{\oplus g}$, where $g=\operatorname{dim} A$, the term $\operatorname{gr}_{0}^{F} \mathcal{M} \otimes \mathscr{T}_{A}$ has no higher cohomology by (26.9). On the other hand, the vanishing theorem says that

$$
H^{i}\left(A, \operatorname{gr}_{1}^{F} \operatorname{Sp}(\mathcal{M}) \otimes L\right)=0 \quad \text { for all } i>0
$$

If we put these two facts together, we find that

$$
\begin{equation*}
H^{i}\left(A, \operatorname{gr}_{1}^{F} \mathcal{M} \otimes L\right)=0 \quad \text { for all } i>0 \tag{26.10}
\end{equation*}
$$

Continuing in this manner, we arrive at the conclusion that

$$
\begin{equation*}
H^{i}\left(A, \operatorname{gr}_{k}^{F} \mathcal{M} \otimes L\right)=0 \quad \text { for all } i>0 \tag{26.11}
\end{equation*}
$$

and so all graded quotients $\operatorname{gr}_{k}^{F} \mathcal{M}$ satisfy the same Kodaira-type vanishing theorem.
Now recall that $T^{*} A=A \times W$, where $W=H^{0}\left(A, \Omega_{A}^{1}\right)$. The vanishing theorem can be used to produce torsion-free sheaves on W. Suppose that $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ is a Hodge module on A. Denote by \mathscr{G} the coherent sheaf on the cotangent bundle corresponding to the associated graded module $\mathrm{gr}^{F} \mathcal{M}$. Also let $p_{1}: A \times W \rightarrow A$ and $p_{2}: A \times W \rightarrow W$ be the two projections.
Lemma 26.12. If L is an ample line bundle on A, then $\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)$ is a torsion-free coherent sheaf on W.
Proof. Coherence is clear (because p_{2} is proper). Let us first analyze what happens when we tensor by L instead of L^{-1}. The higher direct images sheaves

$$
R^{i}\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L\right)
$$

are coherent, and since W is affine, we have

$$
H^{0}\left(W, R^{i}\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L\right)\right)=H^{i}\left(A \times W, \mathscr{G} \otimes p_{1}^{*} L\right)=H^{i}\left(A,\left(p_{1}\right)_{*} \mathscr{G} \otimes L\right)
$$

This vanishes for every $i>0$ because of (26.11) and the fact that $\left(p_{1}\right)_{*} \mathscr{G}=\operatorname{gr}{ }^{F} \mathcal{M}$. The conclusion is that the complex

$$
\mathbf{R}\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L\right)
$$

is actually a single coherent sheaf in degree zero.
Now let us turn to the sheaf $\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)$. If we apply Grothendieck duality for the proper morphism p_{2}, we get
$\mathbf{R} \mathcal{H o m}_{\mathscr{O}_{W}}\left(\mathbf{R}\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right), \mathscr{O}_{W}\right) \cong \mathbf{R}\left(p_{2}\right)_{*} \mathbf{R} \mathcal{H o m}_{\mathscr{O}_{A \times W}}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}, p_{1}^{*} \omega_{A}[g]\right)$, since the relative dualizing sheaf is $\omega_{A \times W / W}=p_{1}^{*} \omega_{A}$. We can rewrite the right-hand side in the more compact form

$$
\mathbf{R}\left(p_{2}\right)_{*}\left(\mathscr{G}^{\prime} \otimes p_{1}^{*} L\right)
$$

where we have introduced the new complex

$$
\mathscr{G}^{\prime}=\mathbf{R} \mathcal{H o m}_{\mathscr{O}_{A \times W}}\left(\mathscr{G}, p_{1}^{*} \omega_{A}\right)[g] .
$$

We can now use the results about the duality functor. They imply that \mathscr{G}^{\prime} is actually a coherent sheaf; more precisely, we have $\mathbb{D}_{X}\left(R_{F} \mathcal{M}\right)=R_{F} \mathcal{M}^{\prime}$ for a Hodge module $\left(\mathcal{M}^{\prime}, F \cdot \mathcal{M}^{\prime}\right)$, and \mathscr{G}^{\prime} is the coherent sheaf associated to $\mathrm{gr}^{F} \mathcal{M}^{\prime}$. According to the discussion above,

$$
\mathbf{R} \mathcal{H o m}_{\mathscr{O}_{W}}\left(\mathbf{R}\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right), \mathscr{O}_{W}\right) \cong\left(p_{2}\right)_{*}\left(\mathscr{G}^{\prime} \otimes p_{1}^{*} L\right)
$$

is therefore a coherent sheaf in degree zero. After dualizing again, we get

$$
\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right) \cong \mathcal{H o m}_{\mathscr{O}_{W}}\left(\left(p_{2}\right)_{*}\left(\mathscr{G}^{\prime} \otimes p_{1}^{*} L\right), \mathscr{O}_{W}\right),
$$

which is reflexive, hence torsion-free.

Exercise.

Exercise 26.1. Let $\tilde{\mathcal{M}}$ be a coherent graded left $\tilde{\mathscr{D}}_{X}$-module. Define $\mathcal{M}=\tilde{\mathcal{M}} /(z-$ 1) $\tilde{\mathcal{M}}$, and let $F_{k} \mathcal{M}$ be the image of $\tilde{\mathcal{M}}_{k}$.
(a) Show that $F_{\bullet} \mathcal{M}$ is a good filtration.
(b) Show that the kernel of the morphism $\varphi: \tilde{\mathcal{M}} \rightarrow R_{F} \mathcal{M}$ consists exactly of those sections that are killed by some power of z.

