Lecture 27: May 17

Today is the last class of the semester. We are going to finish the proof of Theorem 26.4. Let me state the result again.

Theorem. Let $f: X \rightarrow A$ be a morphism from a smooth projective variety to an abelian variety. If $H^{0}\left(X, \omega_{X}^{m} \otimes f^{*} L^{-1}\right) \neq 0$ for some $m \geq 1$ and some ample line bundle L on A, then one has $Z\left(f^{*} \omega\right) \neq \emptyset$ for every $\omega \in H^{0}\left(A, \Omega_{A}^{1}\right)$.

Last time, we introduced the set

$$
\left.S_{f}=\left\{(a, \omega) \in A \times W \mid f^{-1}(a) \cap Z\left(f^{*} \omega\right) \neq \emptyset\right\}=(f \times \mathrm{id})(d f)^{-1}(0)\right),
$$

where the notation is as follows:

$$
\begin{aligned}
& X \times W \xrightarrow{d f} T^{*} X \\
& \quad \downarrow^{f \times \text { id }} \\
& A \times W
\end{aligned}
$$

We also observed that the result about one-forms is equivalent to the surjectivity of $p_{2}: S_{f} \rightarrow W$. Finally, we talked briefly about filtered \mathscr{D}-modules and Hodge modules, and we showed that if $\left(\mathcal{M}, F_{\bullet} \mathcal{M}\right)$ is a Hodge module on the abelian variety A, and if \mathscr{G} is the coherent sheaf on $T^{*} A=A \times W$ corresponding to $\operatorname{gr}^{F} \mathcal{M}$, then for any ample line bundle L,

$$
\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)
$$

is a torsion-free coherent sheaf on W. This was a consequence of Saito's vanishing theorem, ultimately. Today, I will show you how to construct the required objects from the hypothesis that $\omega_{X}^{m} \otimes f^{*} L^{-1}$ has a section.

Base change. Whenever the m-th power of a line bundle has a section, one can construct a cyclic covering. We can put ourselves in this situation with the help of a very useful small trick. On the abelian variety A, we have the multiplication homomorphism

$$
[m]: A \rightarrow A, \quad a \mapsto \underbrace{a+\cdots+a}_{m \text { times }}
$$

for any $m \in \mathbb{Z}$. It is finite and étale, of degree equal to $m^{2 \operatorname{dim} A}$, which is the same as the number of m-torsion points in A. The effect of pulling back by $[m]$ is to make line bundles more divisible. In fact, if L is symmetric, in the sense that $[-1]^{*} L \cong L$, then one has $[m]^{*} L \cong L^{m^{2}}$; if L is anti-symmmetric, in the sense that $[-1]^{*} L \cong L^{-1}$, then one still has $[m]^{*} L \cong L^{m}$. Since we can write any line bundle as the product of a symmetric and an anti-symmetric one, it follows that

$$
[2 m]^{*} L \cong L^{\prime m}
$$

for some other line bundle L^{\prime}. Now consider the fiber product diagram

Because ψ is finite and étale, we get $\psi^{*} \omega_{X} \cong \omega_{X^{\prime}}$, and therefore

$$
\psi^{*}\left(\omega_{X}^{m} \otimes f^{*} L^{-1}\right) \cong\left(\omega_{X^{\prime}} \otimes f^{\prime *} L^{\prime-1}\right)^{m}
$$

Again because ψ is finite and étale, it does not affect the zero loci of holomorphic one-forms; more precisely, we have

$$
\psi^{-1} Z\left(f^{*} \omega\right)=Z\left(f^{\prime *} \omega\right)
$$

because $[2 m]^{*} \omega=2 m \cdot \omega$. For the purpose of proving Theorem 26.4, we can therefore safely replace $f: X \rightarrow A$ by its base change $f^{\prime}: X^{\prime} \rightarrow A$; this allows us to assume that the m-th power of the line bundle $B=\omega_{X} \otimes f^{*} L^{-1}$ has a nontrivial global section.

Cyclic coverings. Suppose for a moment that we have a nonsingular algebraic variety X and a line bundle B, as well as a nontrivial global section $s \in H^{0}\left(X, B^{m}\right)$ for some $m \geq 2$. In that case, one can construct a finite morphism

$$
\pi: Y \rightarrow X
$$

with the property that $\pi^{*} B$ has a global section s_{0} such that $s_{0}^{m}=\pi s$. Since the group of m-th roots of unities naturally acts on Y, this is called the cyclic covering determined by the section s.

Example 27.1. When B is the trivial bundle, s is just a regular function on X; in that case, Y is the closed subscheme of $X \times \mathbb{A}^{1}$ defined by the equation $t^{m}=s$, where t is the coordinate on \mathbb{A}^{1}. Here t serves as the m-th root of s.

The construction in the general case is similar. Let $p: V=\mathbb{V}(B) \rightarrow X$ be the algebraic line bundle (whose sheaf of sections is the locally free sheaf B). The pullback $\pi^{*} B$ has a tautological section $s_{0} \in H^{0}\left(V, \pi^{*} B\right)$, and one defines $Y \subseteq V$ as the closed subscheme cut out by the section $s_{0}^{m}-\pi^{*} s$ of the line bundle $\pi^{*} B^{m}$. By construction, the morphism $\pi: Y \rightarrow X$ is finite of degree m, and $\pi^{*} B$ has a global section s_{0} such that $s_{0}^{m}=\pi^{*} s$. (This construction has a simple universal property, which I will leave to you to formulate and prove.)

Unless the divisor of s is nonsingular, the cyclic covering Y will be singular, but we can resolve its singularities. In this way, we obtain a proper morphism

$$
\varphi: Z \rightarrow X
$$

generically finite of degree m, from a nonsingular algebraic variety Z, such that the line bundle $\varphi^{*} B$ has a section $s_{0} \in H^{0}\left(Z, \varphi^{*} B\right)$ with $s_{0}^{m}=\varphi^{*} s$.

Sheaves. If we apply the cyclic covering construction to $B=\omega_{X} \otimes f^{*} L^{-1}$, we obtain the following diagram:

Here Z is a nonsingular projective variety of $\operatorname{dimension~} \operatorname{dim} Z=\operatorname{dim} X=n$, and φ is generically finite of degree m. We may view the resulting nontrivial section of $\varphi^{*} B=\varphi^{*} \omega_{X} \otimes h^{*} L^{-1}$ as a nontrivial morphism

$$
\begin{equation*}
h^{*} L \rightarrow \varphi^{*} \omega_{X} \tag{27.2}
\end{equation*}
$$

We can use the morphism from Z to A to construct a filtered \mathscr{D}-module on the abelian variety. The underlying \mathscr{D}_{A}-module is simply the direct image $\mathcal{M}=$ $\mathcal{H}^{0} h_{+} \omega_{Z}$. Since $\left(\omega_{Z}, F_{\bullet} \omega_{Z}\right)$ is actually a Hodge module on Z, the graded $\tilde{\mathscr{D}}_{A^{-}}$ module $\tilde{\mathcal{M}}=\mathcal{H}^{0} h_{+}\left(R_{F} \omega_{Z}\right)$ is strict, and so there is a good filtration $F_{\bullet} \cdot \mathcal{M}$ such that $\tilde{\mathcal{M}}=R_{F} \mathcal{M}$. Moreover, $(\mathcal{M}, F \bullet \mathcal{M})$ is again a Hodge module on A. If we denote by \mathscr{G} the associated coherent sheaf on $T^{*}=A \times W$, then we know from last time that

$$
\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)
$$

is a torsion-free coherent sheaf on W.
Since we constructed \mathscr{G} from the morphism $h: Z \rightarrow A$, which is more singular than the original morphism $f: X \rightarrow A$, the support of \mathscr{G} has nothing to do with the set $S_{f} \subseteq T^{*} A$ that we are interested in; in fact, one has $\operatorname{Supp} \mathscr{G} \subseteq S_{h}$, which is
much larger in general. But we can use the existence of (27.2) to construct another coherent sheaf \mathscr{F} with Supp $\mathscr{F} \subseteq S_{f}$. Consider again the "big" diagram

Last time, we said that for direct images of Hodge modules, one can compute the corresponding sheaves on the cotangent bundle very explicitly. The characteristic variety of ω_{Z} is the zero section in $T^{*} Z$, and the resulting coherent sheaf is $i_{*} \omega_{Z}$, where $i: Z \hookrightarrow T^{*} Z$ is the zero section. In the case of $\mathcal{M}=\mathcal{H}^{0} h_{+} \omega_{Z}$, the formula from last time says that \mathscr{G} is the 0 -th cohomology sheaf of the complex

$$
\mathbf{R}(h \times \mathrm{id})_{*} \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)
$$

Let $p: T^{*} Z \rightarrow Z$ be the projection. Since the zero section is exactly the vanishing locus of the tautological section of $p^{*} \Omega_{Z}^{1}$, the Koszul complex

$$
p^{*} \Omega_{Z}^{n+\bullet}=\left[p^{*} \mathscr{O}_{Z} \rightarrow p^{*} \Omega_{Z}^{1} \rightarrow \cdots \rightarrow p^{*} \Omega_{Z}^{n}\right]
$$

is a locally free resolution of the coherent sheaf $i_{*} \omega_{Z}$ on $T^{*} Z$. Consequently,

$$
\mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)=\left[p_{1}^{*} \mathscr{O}_{Z} \rightarrow p_{1}^{*} \Omega_{Z}^{1} \rightarrow \cdots \rightarrow p_{1}^{*} \Omega_{Z}^{n}\right]
$$

which means that \mathscr{G} is the 0 -th cohomology sheaf of the complex

$$
\mathbf{R}(h \times \mathrm{id})_{*}\left[p_{1}^{*} \mathscr{O}_{Z} \rightarrow p_{1}^{*} \Omega_{Z}^{1} \rightarrow \cdots \rightarrow p_{1}^{*} \Omega_{Z}^{n}\right]
$$

Now consider the morphism $\varphi: Z \rightarrow X$. For each $p \geq 0$, we have a pullback morphism $\varphi^{*} \Omega_{X}^{p} \rightarrow \Omega_{Z}^{p}$; these fit together into a morphism of complexes

$$
\left[p_{1}^{*} \varphi^{*} \mathscr{O}_{X} \rightarrow p_{1}^{*} \varphi^{*} \Omega_{X}^{1} \rightarrow \cdots \rightarrow p_{1}^{*} \varphi^{*} \Omega_{X}^{n}\right] \rightarrow\left[p_{1}^{*} \mathscr{O}_{Z} \rightarrow p_{1}^{*} \Omega_{Z}^{1} \rightarrow \cdots \rightarrow p_{1}^{*} \Omega_{Z}^{n}\right]
$$

In derived category notation, this means that we have a morphism

$$
\mathbf{L}(\varphi \times \mathrm{id})^{*} \mathbf{L}(d f)^{*}\left(i_{*} \omega_{X}\right) \rightarrow \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)
$$

Here $i: X \hookrightarrow T^{*} X$ is the zero section, and $p: T^{*} X \rightarrow X$ the projection. Since $i_{*} \mathscr{O}_{X} \otimes p^{*} \omega_{X} \cong i_{*}\left(\mathscr{O}_{X} \otimes i^{*} p^{*} \omega_{X}\right) \cong i_{*} \omega_{X}$ by the projection formula, we can rewrite this morphism in the more convenient form

$$
p_{1}^{*}\left(\varphi^{*} \omega_{X}\right) \otimes \mathbf{L}(\varphi \times \mathrm{id})^{*} \mathbf{L}(d f)^{*}\left(i_{*} \mathscr{O}_{X}\right) \rightarrow \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)
$$

Now we compose this with (27.2) to obtain a morphism

$$
p_{1}^{*}\left(h^{*} L\right) \otimes \mathbf{L}(\varphi \times \mathrm{id})^{*} \mathbf{L}(d f)^{*}\left(i_{*} \mathscr{O}_{X}\right) \rightarrow \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)
$$

Move the line bundle factor to the other side, and use the adjunction between the two functors $\mathbf{L}(\varphi \times \mathrm{id})^{*}$ and $\mathbf{R}(\varphi \times \mathrm{id})_{*}$. This gives an equivalent morphism

$$
\mathbf{L}(d f)^{*}\left(i_{*} \mathscr{O}_{X}\right) \rightarrow \mathbf{R}(\varphi \times \mathrm{id})_{*}\left(p_{1}^{*}\left(h^{*} L^{-1}\right) \otimes \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right)\right)
$$

Now push forward to $A \times W$ and use the projection formula to pull out the line bundle factor. This finally gives us the following morphism

$$
\begin{equation*}
\mathbf{R}(f \times \mathrm{id})_{*} \mathbf{L}(d f)^{*}\left(i_{*} \mathscr{O}_{X}\right) \rightarrow \mathbf{R}(h \times \mathrm{id})_{*} \mathbf{L}(d h)^{*}\left(i_{*} \omega_{Z}\right) \otimes p_{1}^{*} L^{-1} \tag{27.3}
\end{equation*}
$$

in the derived category $D_{c o h}^{b}\left(\mathscr{O}_{A \times W}\right)$. If we take cohomology in degree zero, we therefore obtain a morphism of coherent sheaves

$$
\begin{equation*}
\mathscr{F} \rightarrow \mathscr{G} \otimes p_{1}^{*} L^{-1} \tag{27.4}
\end{equation*}
$$

Here \mathscr{F} is the 0 -th cohomology sheaf of the complex $\mathbf{R}(f \times \mathrm{id})_{*} \mathbf{L}(d f)^{*}\left(i_{*} \mathscr{O}_{X}\right)$, and as such, it is obviously supported inside the set

$$
(f \times \mathrm{id})\left(d f^{-1}(0)\right)=S_{f} .
$$

Now all the pieces are in place to prove the theorem about one-forms.
Proof of Theorem 26.4. We are trying to show that $p_{2}: S_{f} \rightarrow W$ is surjective. Suppose, for the sake of argument, that $p_{2}\left(S_{f}\right) \neq W$. Then $\left(p_{2}\right)_{*} \mathscr{F}$ is a coherent sheaf on W whose support is contained inside a proper closed subset, hence a torsion sheaf. Because $\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)$ is torsion-free, the morphism

$$
\left(p_{2}\right)_{*} \mathscr{F} \rightarrow\left(p_{2}\right)_{*}\left(\mathscr{G} \otimes p_{1}^{*} L^{-1}\right)
$$

must be trivial. Taking global sections, this means that the morphism

$$
H^{0}(A \times W, \mathscr{F}) \rightarrow H^{0}\left(A \times W, \mathscr{G} \otimes p_{1}^{*} L^{-1}\right)
$$

is also trivial. Now both sides are actually graded modules, due to the fact that (27.3) is constructed from sheaves on the zero section (which are stable under the natural \mathbb{C}^{*}-action on the cotangent bundle). The first nontrivial graded piece (in degree $-n$) comes out to be

$$
H^{0}\left(X, \mathscr{O}_{X}\right) \rightarrow H^{0}\left(Z, \omega_{Z} \otimes h^{*} L^{-1}\right)
$$

But now we have a contradiction, because the composition $h^{*} L \rightarrow \varphi^{*} \omega_{X} \rightarrow \omega_{Z}$ is not the zero morphism, due to the fact that (27.2) is nontrivial by assumption. This means that we have a nontrivial section of $\omega_{Z} \otimes h^{*} L^{-1}$, and so the above morphism cannot have been zero. The conclusion is that $p_{2}\left(S_{f}\right)=W$.

