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Lecture 3: February 11

Dimension and multiplicity. We are going to introduce two important invari-
ants of modules over the Weyl algebra, namely dimension and multiplicity. They
are defined using good filtrations. For this, we need to work with the Bernstein fil-
tration on An, so in today’s lecture, F•An = FB

• An will always mean the Bernstein
filtration. Recall that each FB

j An has finite dimension over K.
Let M be a finitely generated An-module, where An = An(K) and K is a field.

Choose a good filtration F•M on M , compatible with the Bernstein filtration F•An.
We saw last time that the existence of such a filtration is equivalent to M being
finitely generated. Since F0An = K, each subspace FjM in the good filtration is a
K-vector space of finite dimension. Consider its dimension

dimK FjM =
jX

i=0

dimK FiM/Fi�1M

as a function of j � 0. Here are some examples:

(1) For M = An with the Bernstein filtration, we have

FjAn =
�X

c↵,�x
↵@�

�� |↵|+ |�|  j
 

and therefore

dimFjAn =

✓
2n+ j

2n

◆
=

1

(2n)!
j2n + · · ·

is a polynomial of degree 2n in the variable j, at least for j � 0.
(2) For M = K[x1, . . . , xn], with the usual filtration by degree, we have

dimFjM =

✓
n+ j

n

◆
=

1

n!
jn + · · ·

is a polynomial of degree n in the variable j.
(3) Consider M = An/An(x1, . . . , xn), with the filtration induced by the Bern-

stein filtration onAn. As aK-vector space,M is isomorphic toK[@1, . . . , @n],
and the filtration is just the filtration by degree. So again,

dimFjM =

✓
n+ j

n

◆
=

1

n!
jn + · · ·

(4) Consider the A1-module M = K[x, x�1], with the filtration FjM = FjAn ·
x�1. Clearly, F0M is spanned by x�1, and it is easy to see that FjM is
spanned by xj�1, xj�2, . . . , x�j�1 for every j � 0. So

dimFjM = 2j + 1

for j � 0, which is again a polynomial of degree 1.

In fact, at least for su�ciently large values of j, the function dimK FjM always
grows like a polynomial.

Proposition 3.1. There is a polynomial �(M,F•M, t) 2 Q[t], called the Hilbert
polynomial of (M,F•M), with the property that

dimK FjM = �(M,F•M, j)

for all su�ciently large values of j.

Proof. The point is that grFAn is a polynomial ring in 2n variables, and so we
can use the theory of Hilbert functions for finitely generated modules over the
polynomial ring. (This is explained very well in Eisenbud’s book Commutative

Algebra.) Let me sketch the proof. Set S = grFAn, and recall that this is isomorphic
to the polynomial ring in 2n variables, with the usual grading by degree. The fact
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that F•M is a good filtration means that grF M is a finitely generated graded S-
module. By Hilbert’s syzygy theorem, every finitely generated graded S-module
admits a finite resolution by graded free S-modules; the length of such a resolution
is at most the number of variables in the polynomial ring, so 2n in our case. Choose
such a resolution

0 ! E2n ! E2n�1 ! · · · ! E1 ! E0 ! grF M ! 0.

Denoting by S(q) the graded S-module with S(q)i = Sq+i, we have

Ep =
M

q2N
S(�q)�bp,q

for certain natural numbers bp,q 2 N, all but finitely many of which are of course
zero. By counting monomials, we have

dimSi =

✓
i+ 2n� 1

2n� 1

◆

for i � 0, and so if we take dimensions in the resolution from above, we get

dimFiM/Fi�1M =
2nX

p=0

(�1)p
X

q

bp,q dimSi�q =
2nX

p=0

(�1)p
X

q

bp,q

✓
i� q + 2n� 1

2n� 1

◆
.

At least for i � 0, this is a polynomial of degree at most 2n � 1 in the variable i,
whose coe�cients are rational numbers. It follows that

dimFjM =
jX

i=0

dimFiM/Fi�1M

is a polynomial of degree at most 2n in the variable j, at least for j � 0. ⇤

If M 6= 0, then the Hilbert polynomial is not the zero polynomial; let d � 0 be
its degree. The proof shows that d  2n. Since dimFjM is of course always a non-
negative integer, it is not hard to see that the leading coe�cient of the polynomial
�(M,F•M, t) must be of the form

m

d!
for some integer m � 1. (See the exercises.) Both d and m are actually invariants
of the module M itself.

Lemma 3.2. The two numbers d and m only depend on M , but they do not depend

on the choice of good filtration on M .

Proof. Let �F (t) = �(M,F•M, t) be the Hilbert polynomial for the good filtra-
tion F•M . Suppose that G•M is another good filtration, with Hilbert polynomial
�G(t) = �(M,G•M, t). By Corollary 2.15, there is an integer k � 0 such that

Fj�kM ✓ GjM ✓ Fj+kM

for every j � 0. This gives

dimFj�kM  dimGjM  dimFj+kM,

and therefore we obtain the inequality

�F (t� k)  �G(t)  �F (t+ k)

for the Hilbert polynomials. Since �F (t±k) has the same leading term as �F (t), it
follows that �G(t) is also a polynomial of degree d with leading coe�cient m/d!. ⇤
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The number d = d(M) is called the dimension of the An-module M , and the
number m = m(M) is called the multiplicity. As long as M 6= 0, we have d(M) � 0
and m(M) � 1. If M = 0, we use the convention that m(M) = 0. We will see later
what the geometric significance of these two numbers is. Going back to the four
examples from above, we see that An has dimension 2n and multiplicity 1; both
K[x1, . . . , xn] and An/An(x1, . . . , xn) have dimension n and multiplicity 1; and the
A1-module K[x, x�1] has dimension 1 and multiplicity 2.

Let us investigate the behavior of dimension and multiplicity for submodules and
quotient modules. Recall that a short exact sequence of An-modules

0 ! M 0 ! M ! M 00 ! 0

means that M 0 is a submodule of M , and that M 00 is isomorphic to the quotient
module M/M 0. Given a filtration F•M , we can induce filtrations on M 0 and M 00

by setting

FjM
0 = M 0 \ FjM and FjM

00 = im(FjM ! M 00).

With this definition, the associated graded modules form a short exact sequence

0 ! grFM 0 ! grFM ! grFM 00 ! 0,

now in the category of grFAn-modules.

Proposition 3.3. Let M be a finitely generated An-module, and F•M a good fil-

tration. Suppose that

0 ! M 0 ! M ! M 00 ! 0

is a short exact sequence of An-modules. Then the induced filtration F•M 0
and

F•M 00
are both good, and

0 ! grFM 0 ! grFM ! grFM 00 ! 0

is a short exact sequence of finitely generated graded grFAn-modules. Moreover:

(a) One has �(M,F•M, t) = �(M 0, F•M 0, t) + �(M 00, F•M 00, t).
(b) One has d(M) = max{d(M 0), d(M 00)}.
(c) If d(M 0) = d(M 00), then m(M) = m(M 0) +m(M 00).

Proof. The short exact sequence follows from the definition of the filtrations on
M 0 and M 00. Since F•M is a good filtration, grFM is finitely generated over the
polynomial ring grFAn. The polynomial ring is commutative and noetherian, and
so both the submodule grFM 0 and the quotient module grFM 00 are again finitely
generated, which means that F•M 0 and F•M 00 are also good filtrations. Taking
dimensions in the short exact sequence, we get the relation

�(M,F•M, t) = �(M 0, F•M
0, t) + �(M 00, F•M

00, t)

among the three Hilbert polynomials. The other two assertions are obvious conse-
quences. ⇤

Example 3.4. The calculation in the proposition explains for example why the
multiplicity of the A1-module K[x, x�1] should be 2. Indeed, we have a short exact
sequence

0 ! K[x] ! K[x, x�1] ! K[x, x�1]/K[x] ! 0.

The class of x�1 generates the quotient module, but since x · x�1 = 1, it is also
annihilated by x, and so the quotient module is actually isomorphic to A1/A1(x).
Both the submodule and the quotient module have multiplicity 1, and therefore
K[x, x�1] must have multiplicity 2.
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Bernstein’s inequality. In our discussion of Hilbert functions, we have only used
properties of the polynomial ring grFAn. Now comes the first place where An-
modules are genuinely di↵erent from modules over the polynomial ring. The fol-
lowing important result is due to Joseph Bernstein.

Theorem 3.5 (Bernstein’s inequality). Let M 6= 0 be a finitely generated An-

module. Then d(M) � n.

Choose a filtration F•M , compatible with the Bernstein filtration on An; after
a shift in the indexing, we can assume that F0M 6= 0.

Lemma 3.6. The multiplication map

FB
j An ! HomK(FjM,F2jM), P 7! (m 7! Pm),

is injective for every j � 0.

Proof. We argue by induction on j � 0. For j = 0, the statement is clearly true:
FB
0 An = K, and since F0M 6= 0, the multiplication map K ! HomK(F0M,F0M)

is obviously injective. Now suppose that the result is known for j � 1 � 0. Assume
for the sake of contradiction that there is a nonzero di↵erential operator P 2 FB

j An

that lies in the kernel of the multiplication map, so that Pm = 0 for everym 2 FjM .
Clearly, P cannot be constant (because FjM is nonzero), and so P has to contain
xi or @i for some i = 1, . . . , n. If xi appears in P , then by a calculation we did in
Lecture 1, the commutator [P, @i] 2 FB

j�1An is still nonzero. But then

[P, @i]m = P (@im)� @i(Pm) = 0

for every m 2 Fj�1M ; indeed, both m and @im belong to FjM , and P annihilates
FjM by assumption. This contradicts the inductive hypothesis. If @i appears in
P , then we use the same argument with [P, xi] instead. ⇤

Now suppose that F•M is a good filtration, and let �(t) = �(M,F•M, t) be the
Hilbert polynomial. The lemma gives

dimFB
j An  dimHomK(FjM,F2jM) = dimFjM · dimF2jM,

and therefore ✓
j + 2n

2n

◆
 �(j) · �(2j)

for all su�ciently large values of j. Since �(t) is a polynomial of degree d(M), we
conclude that 2n  2d(M), or n  d(M). This proves Bernstein’s inequality.

Holonomic modules. Bernstein’s inequality suggests the following definition.

Definition 3.7. A finitely generated An-module M is called holonomic if either
M 6= 0 and d(M) = n, or if M = 0.

Holonomic modules are those for which the dimension takes the minimal value
allowed by Bernstein’s inequality. We also consider the zero module to be holonomic
for convenience. In the special case of holonomic modules, Proposition 3.3 has many
nice consequences. The following result would be cumbersome to state if we did
not consider the zero module to be holonomic.

Corollary 3.8. Suppose that

0 ! M 0 ! M ! M 00 ! 0

is a short exact sequence of An-modules. Then M is holonomic if and only if M 0
and

M 00
are holonomic. In particular, submodules and quotient modules of holonomic

modules are again holonomic.
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Proof. This follows from the fact that d(M) = max{d(M 0), d(M 00)} and Bernstein’s
inequality. ⇤

Now suppose that M is a nonzero holonomic module, with a certain multiplicity
m(M) � 1. If we have any chain of submodules

M1 ✓ M2 ✓ M3 ✓ · · · ✓ M` ✓ M,

then each Mj is again holonomic, hence of dimension n. By Proposition 3.3, the
multiplicities add, and so

m(M) = m(M1) +m(M/M1) = m(M1) +m(M2/M1) + · · ·+m(M`/M`�1).

If the chain is strictly increasing, then each term in the sum is � 1, and so we get
`  m(M). In other words, the length of any strictly increasing (or decreasing)
chain of submodules is bounded by m(M).

Corollary 3.9. Let M be a holonomic An-module.

(a) M is both noetherian and artininian, meaning that every increasing or de-

creasing chain of submodules stabilizes.

(b) M has finite length, meaning that it admits a finite filtration whose subquo-

tients are simple An-modules.

Proof. The first assertion follows from the calculation we just did. For the second
assertion, see the exercises. ⇤

We have already seen a few simple examples of holonomic modules; for instance,
K[x1, . . . , xn] is a holonomic An-module, and K[x, x�1] is a holonomic A1-module.
Here is a more interesting class of holonomic An-modules.

Proposition 3.10. Let p 2 K[x1, . . . , xn] be a nonzero polynomial. Then

M = K[x1, . . . , xn, p
�1],

with the structure of left An-module given by formal di↵erentiation, is a holonomic

An-module.

Unlike the example of K[x, x�1], it is not even obvious that M is finitely gener-
ated. Fortunately, we can use the following numerical criterion for holonomicity.

Lemma 3.11. Let M be a An-module, and F•M a filtration compatible with the

Bernstein filtration on An. If

dimK FjM  c

n!
jn + c1(j + 1)n�1

for some constants c, c1 � 1, then M is holonomic and m(M)  c. In particular,

M is finitely generated.

Proof. The idea is to study finitely generated submodules of M . These are easy to
construct: simply take any finite number of elements of M and look at the sub-
module they generate. Let N ✓ M be any nonzero finitely generated submodule,
and F•N a good filtration of N . The filtration N \ F•M is compatible with the
Bernstein filtration, but of course not necessarily good. Still, according to Corol-
lary 2.15, there is an integer k � 0 such that

FjN ✓ N \ Fj+kM ✓ Fj+kM

for every j � 0. Taking dimensions, we get

dimFjN  dimFj+kM  c

n!
(j + k)n + c1(j + k + 1)n�1,

and therefore d(N)  n. Since d(N) � n by Bernstein’s inequality, we see that
d(N) = n, and so N is holonomic. It also follows that m(N)  c, by looking at the
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leading terms on both sides. Therefore any finitely generated submodule of M is
holonomic and has multiplicity at most c.

This implies now that M itself must be finitely generated, hence holonomic.
To see this, choose any nonzero element m1 2 M , and let N1 be the submodule
generated by m1. If N1 = M , then we are done; otherwise, choose an element
m2 2 M \N1, and let N2 be the submodule generated by m1 and m2. If N2 = M ,
then we are done; otherwise, choose an element m3 2 M \ N2, and let N3 be
the submodule generated by m1,m2,m3. Continuing in this way, we produce an
chain of submodules N1 ⇢ N2 ⇢ N3 ⇢ · · · . Because each Nj is holonomic with
m(Nj)  c, this chain has to stabilize after at most c steps, and so M is in fact
generated by at most c elements. In particular, M is holonomic and m(M)  c. ⇤

Note that the filtration F•M is not necessarily good. The lemma is quite re-
markable: it allows us to prove that M is finitely generated simply by computing
the dimensions of FjM .

Now we apply this to study the An-module M = K[x1, . . . , xn, p�1]. The action
by An is by formal di↵erentiation:

@j(fp
�`) = �`f

@p

@xj
p�(`+1) +

@f

@xj
p�` =

✓
�`f

@p

@xj
+ p

@f

@xj

◆
p�(`+1).

Let m = deg p, and consider the filtration

FjM =
�
fp�`

�� deg f  (m+ 1)`
 
.

Each FjM is a finite-dimensional K-vector space. If fp�` 2 FjM , then deg f 
(m + 1)`, and so xjfp�` and @j(fp�`) again belong to Fj+1M (by the above for-
mula). In other words, the filtration is compatible with the Bernstein filtration on
An. Lastly, we have M =

S
FjM ; indeed, given any element fp�` 2 M , we have

fp�` = (fpk)p�(`+k),

and since deg(fpk) = deg f + km  (m + 1)(` + k) for su�ciently large k, the
element eventually belongs to F`+kM . Taking dimensions, we have

dimFjM =

✓
(m+ 1)j + n

n

◆
,

which is a polynomial of degree n in j with leading coe�cient (m+ 1)n/n!. So the
lemma shows that M is holonomic with m(M)  (m+ 1)n.

Exercises.

Exercise 3.1. Suppose that �(t) 2 Q[t] has the property that �(j) 2 Z for all su�-
ciently large values of j 2 Z. Show that �(t) can be written as a linear combination,
with integer coe�cients, of the polynomials

�n(t) =
t(t� 1) · · · (t� n+ 1)

n!
for n � 0. Conclude that the leading coe�cient of �(t) has the form m/d! for some
m 2 Z, where d is the degree of �(t).

Exercise 3.2. Show that A1/A1P is holonomic for every nonzero P 2 A1.

Exercise 3.3. Recall that a (left) An-module M is said to be simple if it does not
have any An-submodules besides {0} and M . Show that every simple An-module
is cyclic, meaning that it be generated by a single element.

Exercise 3.4. The goal of this exercise is to prove that every holonomic An-module
is cyclic. This phenomenon is very di↵erent from the case of modules over the
polynomial ring.
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(a) Let M be a nonzero holonomic An-module. Show that M has finite length,
meaning that it admits a filtration by An-submodules whose subquotients
are simple modules. Let ` � 1 be the length of such a filtration.

(b) Show that the result is true if ` = 1.
(c) If ` � 2, let N ✓ M be a simple submodule, generated by some m0 2 N .

By induction, M/N is cyclic, so let m 2 M be any element that maps to
a generator of M/N . Show that the left ideal I =

�
P 2 An

�� Pm = 0
 
is

nonzero.
(d) Show that there is some Q 2 An such that IQ is not contained in the left

ideal
�
P 2 An

�� Pm0 = 0
 
. (Hint: An is a simple algebra.)

(e) Now choose P 2 I such that PQm0 6= 0. Show that the element m+Qm0

generates M as a left An-module.


