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Lecture 4: February 13

Last time, somebody asked what happens to chains of submodules when the
dimension is greater than n. Here is an example to show that there can be infinite
descending chains. (Since An is noetherian, there are no infinite ascending chains
in finitely generated An-modules.)

Example 4.1. Consider the chain of submodules

A1 � A1x � A1x
2 � · · ·

All modules in this chain are isomorphic to A1, and all subquotients are isomorphic
to A1/A1x. What happens is that, in the short exact sequence

0 ! A1
x�! A1 ! A1/A1x ! 0,

the first two modules have dimension 2 and multiplicity 1, whereas the third module
has dimension 1 and multiplicity 1.

Distributions and polynomials. Today, we are going to look at an application
of holonomic An-modules to the study of certain integrals. This was in fact one of
the reasons why the theory was developed in the first place. For the time being,
we take K = R. Let p 2 R[x1, . . . , xn] be a nonzero polynomial with the property
that p(x1, . . . , xn) � 0 for every (x1, . . . , xn) 2 Rn. (We can always achieve this by
replacing p by its square.)

Let S(Rn) be the Schwartz space of all rapidly decreasing functions. A complex-
valued function ' 2 C1(Rn) is rapidly decreasing if the quantity

p↵,�(f) = sup
x2Rn

|x↵@�'(x)|

is finite for every pair of multi-indices ↵,� 2 Nn. Then S(Rn) is a topological vector
space, with the topology defined by the family of semi-norms p↵,� . A tempered

distribution T is a continuous linear functional T : S(Rn) ! C.
Now fix a rapidly decreasing function ' 2 S(Rn), and consider the integral

Ts(') =

Z

Rn

p(x)s'(x) dµ(x),

as a function of the complex parameter s 2 C. For Re s > 0, the integral makes
sense and has a finite value, due to the fact that ' is rapidly decreasing (and p only
takes nonnegative real values). Di↵erentiation under the integral sign shows that
Ts(') is actually a holomorphic function of s for Re s > 0.

Example 4.2. The Gamma function

�(s) =

Z 1

0
xs�1e�x

dx

is a typical example of such an integral. The integral only makes sense for Re s > 0,
but in fact, �(s) can be analytically continued to a meromorphic function on C with
simple poles along {0,�1,�2, . . . }. This is done step by step, using integration by
parts. One has

d

dx

�
xse�x

�
= sxs�1e�x � xse�x,

and therefore

s�(s) = xse�x
���
1

0
+

Z 1

0
xse�x

dx = �(s+ 1)

for Re s > 0; now the identity �(s) = �(s + 1)/s provides an extension of the
Gamma function to Re s > �1, with a simple pole at s = 0.
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Now the question is whether Ts(') can always be extended to a meromorphic
function on the entire complex plane. Bernstein discovered that the answer is yes.
The reason is that one always has a functional equation of the form

(4.3) D(s)p(x)s+1 = b(s)p(x)s,

where b(s) 2 R[s] is a monic polynomial, and D(s) 2 An

�
R[s]

�
is a di↵erential

operator with coe�cients in the ring R[s]. This sort of relation gives the desired
meromorphic extension, again step by step. Indeed, after substituting into the
integral and integrating by parts, we get

b(s)Ts(') =

Z

Rn

D(s)p(x)s+1'(x) dµ =

Z

Rn

p(x)s+1�
�
D(s)

�
'(x) dµ,

where �
�
D(s)

�
is the di↵erential operator obtained from D(s) by the left-to-right

transformation in Lecture 2. (The reason is that each time we integrate by parts
to move @j from the first to the second factor, we get an additional minus sign.)
The new integral is again holomorphic for Re s > �1, and after dividing by b(s),
we obtain a meromorphic extension of Ts(') to the half plane Re s > �1, possibly
with poles along the zero set of b(s). Continuing in this manner, we can extend
Ts(') to a meromorphic function on the entire complex plane, with poles contained
in the set �

s 2 C
�� b(s+ k) = 0 for some k � 0

 
.

For this reason, we obviously want to choose the polynomial b(s) in (4.3) to be of
minimal degree.

Example 4.4. In the case of the Gamma function, we have p(x) = x, and the desired
relation is simply that @xs+1 = (s+ 1)xs.

Berstein polynomials. Let us now investigate the existence of the relation in
(4.3). This works over any field K, and so we relax the assumptions and allow
p 2 K[x1, . . . , xn] to be any nonzero polynomial. Set m = deg p. Since we are
going to work algebraically, we let s be an independent variable, and consider the
field of rational functions K(s), and the Weyl algebra An

�
K(s)

�
with coe�cients

in K(s). We now endow the K(s)-vector space

M = K(s)[x1, . . . , xn, p
�1]

with the structure of a left An

�
K(s)

�
-module, as follows. Multiplication by poly-

nomials with coe�cients in K(s) is defined as usual; and

@j
�
fp�`

�
=

@f

@xj
p�` + (s� `)f

@p

@xj
p�(`+1).

One can check, based on the discussion in Lecture 2, that this defines a left action
by the Weyl algebra with coe�cients in K(s). The formulas are easier to remember
if we introduce a formal symbol ps, with the property that

@jp
s = sp�1 @p

@xj
· ps,

and write elements of Mps in the form fps�`. Then the formula from above is
simply the (formally correct) di↵erentiation rule

(4.5) @j
�
fps�`

�
=

@f

@xj
ps�` + (s� `)f

@p

@xj
ps�(`+1).

The same calculation as in Lecture 3 shows that the filtration

FjM =
�
fp�`

�� deg f  (m+ 1)`
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is compatible with the Bernstein filtration on An

�
K(s)

�
, and

dimK(s) FjM =

✓
(m+ 1)`+ n

n

◆
.

According to Lemma 3.11, M is therefore a holonomic module, of multiplicity at
most (m+ 1)n.

Now consider, for k � 0, the submodule Mk ✓ M generated by pk; concretely,

Mk = An

�
K(s)

�
· pk ✓ M.

Clearly M0 ◆ M1 ◆ M2 ◆, and because M is holonomic, each Mk is holonomic,
and the chain has to stabilize after at most m(M) many steps. So there exists some
k � 0 such that Mk+1 = Mk. This means concretely that there is a di↵erential
operator Q(s) 2 An

�
K(s)

�
with the property that Q(s)pk+1 = pk. Note that Q(s)

has coe�cients in the field of rational functionsK(s), so there may be denominators.
Let d(s) 2 K[s] be a nonzero polynomial such that R(s) = d(s)Q(s) has coe�cients
in K[s]. Then we get R(s)pk+1 = d(s)pk, which we can write symbolically as

R(s)ps+k+1 = d(s)ps+k.

After replacing s by s� k everywhere (which is compatible with the di↵erentiation
rule in (4.5), and therefore okay), we obtain the identity

R(s� k)ps+1 = d(s� k)ps,

which has the same shape as (4.3). Now let b(s) 2 K[s] be the monic polynomial
of minimal degree that satisfies a relation of the form

D(s)ps+1 = b(s)ps

for some di↵erential operator D(s) 2 An

�
K[s]

�
.

Definition 4.6. The polynomial b(s) 2 K[s] is called the Bernstein polynomial of
p 2 K[x1, . . . , xn], and D(s) 2 An

�
K[s]

�
is called a Bernstein operator for p.

In fact, the set of all polynomials for which such a relation holds is closed under
addition and multiplication by elements of K[s], and therefore an ideal in K[s].
The Bernstein polynomial is then simply the unique monic generator of this ideal,
keeping in mind that K[s] is a principal ideal domain.

Note. The relation D(s)p = b(s) in the module M implies (by induction on the
exponent of p in the denominator) that M0 = M , in the notation from above. Here
is another way of looking at the Bernstein polynomial: Multiplication by s defines
an endomorphism of the quotient module

M0/M1 = M/An

�
K(s)

�
p,

and b(s) is the minimal polynomial for this endomorphism.

Let us finish by computing a few examples of Bernstein polynomials.

Example 4.7. In one variable, let p = x. Here @xs+1 = (s + 1)xs, and so we have
b(s) = s+ 1 and D(s) = @.

Example 4.8. Still in one variable, take p = x2. Now @ps+1 = (s+ 1)2xps, and

@2ps+1 = (s+ 1)
�
2ps + 4x2sps�1

�
= (s+ 1)(2ps + 4sps) = (s+ 1)(4s+ 2)ps,

and therefore b(s) = (s+ 1)(s+ 1
2 ).

Example 4.9. The previous example generalizes to p = xm; after applying @m, one
finds that b(s) = (s+ 1)(s+ m�1

m ) · · · (s+ 1
m ).
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Example 4.10. In n variables, we can take p = xm1
1 · · ·xmn

n , and after applying the
di↵erential operator @m1

1 · · · @mn
n , we get

b(s) =
nY

j=1

mjY

k=1

✓
s� k

mj

◆

Example 4.11. Another case that can be computed by hand is p = x2
1 + · · · + x2

n.
Here we again have

@2
j p

s+1 = (s+ 1)
�
2ps + 4x2

jsp
s�1

�

by the calculation in the second example, and therefore

(@2
1 + · · ·+ @2

n)p
s+1 = (s+ 1)(2n+ 4s)ps.

So the Bernstein polynomial in this case is b(s) = (s+ 1)(s+ n
2 ).

These examples suggest that s = �1 is always a root of the Bernstein polynomial.
It can be proved (using resolution of singularities) that all roots of the Berstein
polynomial are negative rational numbers. In general, the Bernstein polynomial
can be found using computer algebra systems (such as Macaulay 2 ); except when
p is homogeneous, the shape of the Bernstein operator D(s) is not easy to guess in
advance, however. Here is a more complicated example for algebraic geometers.

Example 4.12. Consider the polynomial p = x2
1 + x3

2; this has a so-called cusp
singularity at the origin. One can show that

✓
1

27
@3
2 +

x2

6
@2
1@2 +

x1

8
@3
1

◆
ps+1 = (s+ 5

6 )(s+ 1)(s+ 7
6 )p

s,

and so the Bernstein polynomial is b(s) = (s+ 5
6 )(s+ 1)(s+ 7

6 ).

The Bernstein polynomial is of interest in the study of hypersurface singularities.
Indeed, the zero set of the polynomial p defines a hypersurface in a�ne space, to use
the terminology from algebraic geometry, and many invariants of its singularities
are related to the roots of the Bernsteint polynomial. For example, the largest root
of the Bernstein polynomial is the so-called “log canonical threshold” of p.


