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Lecture 5: February 18

Basic facts about algebraic geometry. The goal of today’s class is to give a
geometric interpretation for the dimension d(M) from last time. Suppose for the
time being that K is an algebraically closed field (such as C). We can then think
of the polynomial ring K[x1, . . . , xn] as being the ring of algebraic functions on
the a�ne space K

n. If An = An(K) is the Weyl algebra, and F•An is either the
Bernstein filtration or the degree filtration, then grFAn

⇠= K[x1, . . . , xn, ⇠1, . . . , ⇠n],
where ⇠j is the class of @j . We can think of this polynomial ring in 2n variables
as the ring of algebraic functions on K

2n = K
n
⇥ K

n, viewed as the cotangent
bundle of Kn. The additional variables ⇠1, . . . , ⇠n, are linear functions on the fibers
of the cotangent bundle. We will see below that d(M) can be interpreted as the
“dimension” of a certain subset of K2n, called the characteristic variety of M .

Since algebraic geometry language will be useful for this, we start with a brief
review of the basic correspondence between closed algebraic subsets of K

n and
ideals in the polynomial ring K[x1, . . . , xn]. To any ideal I ✓ K[x1, . . . , xn], we can
associate a closed subset

Z(I) =
�
(a1, . . . , an) 2 K

n
�� f(a1, . . . , an) = 0 for every f 2 I

 

Since the polynomial ring is noetherian, every ideal is finitely generated, and so
every closed subset of this type can in fact be defined by finitely many polynomial
equations. Conversely, to a closed subset Z ✓ K

n defined by polynomial equations,
we can associate the ideal

IZ =
�
f 2 K[x1, . . . , xn]

�� f(a1, . . . , an) = 0 for every (a1, . . . , an) 2 Z
 

of all polynomials that vanish on Z. If fm
2 IZ for some m � 1, then of course

also f 2 IZ (because K is a field), and so IZ is always a radical ideal. Here the
radical of an ideal I is defined as

p

I =
�
f 2 K[x1, . . . , xn]

�� fm
2 I for some m � 1

 
,

and an ideal is called a radical ideal if I =
p
I. One can show that

Z(IZ) = Z and IZ(I) =
p

I.

The second assertion is usually called the Nullstellensatz. One can summarize this
by saying that I 7! Z(I) and Z 7! IZ sets up a one-to-one correspondence

�
closed algebraic subsets of Kn

�
 !

�
radical ideals in K[x1, . . . , xn]

�

This correspondence reverses the order, meaning that I1 ✓ I2 i↵ Z(I2) ✓ Z(I1).
The quotient ring K[x1, . . . , xn]/IZ can be viewed as the ring of algebraic functions
on the algebraic variety Z, where a polynomial determines a function on Z by
restriction (and IZ is the ideal of functions whose restriction to Z is zero).

Since K is algebraically closed, every maximal ideal in K[x1, . . . , xn] is of the
form (x1 � a1, . . . , xn � an) for some (a1, . . . , an) 2 K

n, and so under the above
correspondence, maximal ideals in the polynomial ring correspond to points of Kn.
More generally, prime ideals correspond to irreducible algebraic subsets, where
irreducible means that the set cannot be written as a union of two strictly smaller
algebraic sets. One can define the dimension of a closed algebraic subset Z ✓ K

n in
two equivalent ways: geometrically, as the length of the longest strictly decreasing
chain of irreducible closed algebraic subsets

Z ◆ Z0 � Z1 � · · · � Zd

contained in Z; algebraically, as the length of the longest strictly increasing chain
of prime ideals

IZ ✓ P0 ⇢ P1 ⇢ · · · ⇢ Pd
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containing IZ . This notion of dimension is known as the Krull dimension, and is
denoted by dimZ. The geometric picture of the chain is that Z0 has dimension
d, Z1 has dimension d � 1, and so on, down to Zd, which has dimension 0 (and
hence is a point). Since ideals in K[x1, . . . , xn] containing IZ are in one-to-one
correspondence with ideals in the quotient ring K[x1, . . . , xn]/IZ , one also has

dimZ = dim
�
K[x1, . . . , xn]/IZ

�
,

where the dimension dimR of a commutative ring R is by definition the length
of the longest strictly increasing chain of prime ideals in R. The polynomial ring
K[x1, . . . , xn] has dimension n, of course.

We shall also need the notion of the support of a module. Let M be a finitely
generated module over K[x1, . . . , xn]. Then

SuppM ✓ K
2n

is the set of all points (a1, . . . , an) 2 K
n such that the localization of M at the

maximal ideal (x1 � a1, . . . , xn � an) is nontrivial. The geometric picture is that
M corresponds to a (coherent) sheaf on K

n, and the support of M is the set of
points where the stalk of this sheaf is nontrivial. (In other words, the complement
of SuppM is the largest open set on which the sheaf is trivial.) The support of M
is a closed algebraic subset, defined by the annihilator ideal

AnnM = AnnK[x1,...,xn] M =
�
f 2 K[x1, . . . , xn]

�� fm = 0 for every m 2M
 
.

We have dimSuppM = dimK[x1, . . . , xn]/AnnM .

Characteristic varieties. Now we return to modules over the Weyl algebra. Let
M be a finitely generated left An-module. If we choose a good filtration F•M ,
compatible with the Bernstein filtration on An, then the associated graded module
grFM is finitely generated over grFAn, the polynomial ring in 2n variables. One
of the basic facts about Hilbert polynomials is that the degree d(M) of the Hilbert
polynomial of grFM is equal to the dimension of Supp grFM ; in symbols,

d
B(M) = dimSupp(grFM) = dimgrFAn/Ann(grFM).

I have added the superscript B to indicate that this notion of dimension is related to
the Bernstein filtration on An. We would now like to have an analogous definition
for the degree filtration on the Weyl algebra, since that is the case that generalizes
to arbitrary D-modules.

From now on, we use the notation F•An for the filtration by the degree of
di↵erential operators. Let M be a finitely generated left An-module, and choose a
good filtration F•M compatible with the degree filtration on An. We define

I(M,F•) = AnngrFAn
(grFM)

as the annihilator of grFM , and use the notation

J(M) =
p
I(M,F•M)

for the radical ideal. We will see in a moment that J(M) only depends on M , but
not on the particular good filtration chosen, justifying the notation. As we said
earlier, the closed subset of K2n corresponding to the radical ideal J(M) is the
support of the module grFM .

Definition 5.1. The characteristic variety Ch(M) is the closed algebraic subset
of K2n corresponding to the radical ideal J(M). Let

d
deg(M) = dimCh(M) = dim

�
grFAn/J(M)

�

be the dimension of the characteristic variety.
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Examples show that the ideal I(M,F•M) depends on the filtration. Nevertheless,
the radical ideal J(M) and the characteristic variety Ch(M) only depend on M .

Proposition 5.2. The ideal J(M) only depends on M , but not on the choice of

good filtration F•M . The same is therefore true for Ch(M).

Proof. We first need to describe the annihilator of grFM more concretely. For a
di↵erential operator P 2 FkAn of order exactly k, we denote by [P ] its image in
grFk An; this is usually called the (principal) symbol of P . Likewise, if m 2 FjM ,
we write [m] 2 grFj M for its image in the associated graded module. The module

structure on grFM is then defined by setting

[P ] · [m] = [Pm] 2 grFk+j M

for [P ] 2 grFk An and [m] 2 grFj M . Thus [P ] · [m] = 0 means that Pm 2 Fk+j�1M

(but it does not mean that Pm = 0). Since grFM is a graded module, the annihila-
tor ideal Ann(grFM) is a homogeneous ideal; by what we just said, it is generated
by all those homogeneous elements [P ] 2 grFk An with the property that

P · FjM ✓ Fk+j�1M

for every j � 0. The radical ideal
p

I(M,F•M) is therefore generated by those
homogeneous elements [P ] 2 grFk An such that, for some m � 1, one has

(5.3) P
m
· FjM ✓ Fmk+j�1M

for every j � 0.
Now let G•M be another good filtration. By Corollary 2.15, the two good

filtrations are comparable, and so there is some j0 � 0 such that

FjM ✓ Gj+j0M and GjM ✓ Fj+j0M

for every j � 0. Suppose that [P ] 2 grFk An belongs to the radical of I(M,F•M),
hence that we have (5.3) for some m � 1. Let ` � 1 be any integer. We have

P
`m

·GjM ✓ P
`m

· Fj+j0M ✓ F`mk+j+j0�`M ✓ G`mk+j+2j0�`M.

If we take ` = 2j0 + 1 and m
0 = `m, then we have

P
m0

·GjM ✓ Gm0k+j�1M

for every j � 0, and so P belongs to the radical of I(M,G•M). Since the situation
is symmetric, we conclude that

p
I(M,G•) =

p
I(M,F•M), and hence that J(M)

is independent of the choice of good filtration. ⇤

Example 5.4. One can tell from the characteristic variety whether or not a finitely
generated An-module M is actually finitely generated over the polynomial ring
K[x1, . . . , xn]. Suppose that M is finitely generated over K[x1, . . . , xn]. Then
setting F�1M = {0} and FjM = M for j � 0 defines a good filtration, and since
grFj M = 0 for j 6= 0, every element in grFAn of strictly positive degree annihilates

grFM . This means that Ch(M) is defined by the ideal (⇠1, . . . , ⇠n) in the polynomial
ring grFAn = K[x1, . . . , xn, ⇠1, . . . , ⇠n]; in other words, Ch(M) is the “zero section”.

Conversely, if Ch(M) is the zero section, then M is actually finitely generated
over K[x1, . . . , xn]. Here is the reason. Choose a good filtration F•M , so that
grFM is finitely generated over grFAn = K[x1, . . . , xn, ⇠1, . . . , ⇠n]. By assumption,
some power of each ⇠j belongs to the annihilator, which means that ⇠e11 · · · ⇠

en
n acts

trivially on grFM as long as e1 + · · · + en is su�ciently large. Thus the finitely
many generators of grFM over grFAn, together with their finitely many images
under the elements ⇠

e1
1 · · · ⇠

en
n for e 2 Nn, generate grFM over K[x1, . . . , xn]. But

this implies that M itself is finitely generated over K[x1, . . . , xn].
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Equality of dimensions. In the next few lectures, we are going to prove that the
two notions of dimension (with respect to the Bernstein filtration and with respect
to the degree filtration) agree: for any finitely generated An-module, one has

d
B(M) = d

deg(M).

This will tell us in particular that the Bernstein inequality d(M) � n also holds
with respect to the degree filtration. The geometric interpretation is that the
characteristic variety Ch(M) always has dimension at least n. The strategy for
proving this is to relate two kinds of dimension to a third invariant of M , which is of
a more homological nature and can be defined without reference to good filtrations.
The invariant is defined in terms of the Ext-modules ExtjR(M,R), namely

j(M) = min
�
j � 0

�� ExtjR(M,R) 6= 0
 
.

The precise result that we are going to prove is that

d
B(M) = 2n� j(M) = d

deg(M).

Let me end with a brief reminder about Ext-modules. Recall that if R is any ring,
and if M and N are two left R-modules, we can form the group

HomR(M,N)

of all left R-linear morphisms from M to R. This defines a contravariant functor
HomR(�, N) from left R-modules to groups, and ExtjR(M,N) is by definition the j-

th derived functor. Concretely, one computes ExtjR(M,N) by choosing a resolution
of M by free left R-modules,

· · ·! L2 ! L1 ! L0 !M ! 0,

and then applying the functor HomR(�, N) to this resolution. Thus ExtjR(M,N)
is the j-th cohomology group of the complex

0! HomR(L0, N)! HomR(L1, N)! HomR(L2, N)! · · ·

In particular, Ext0R(M,N) = HomR(M,N). Note that unless R is commutative,
HomR(M,N) typically no longer has the structure of a left or right R-module. But
in the special case where N = R, we can use the right R-module structure on the
ring R to endow HomR(M,R) with the structure of a right R-module. Concretely,
for f 2 HomR(M,R), and for r 2 R, we define f · r 2 HomR(M,R) by the formula

(f · r)(x) = f(x)r.

Since the multiplication in R is associative, f · r is again left R-linear. Using a
resolution as above, it follows that each ExtjR(M,R) is naturally a right R-module.
(Similar comments apply if we work with right R-modules.)

Exercises.

Exercise 5.1. Let M = A1/A1(x) be the left A1-module related to the �-function.
Show that the image of 1 2 A1 and the image of @ 2 A1 both generate M , but that
the two resulting good filtrations F•M and G•M give rise to di↵erent annihilator
ideals: I(M,F•M) 6= I(M,G•M).

Exercise 5.2. Let I ✓ An be a left ideal, and let FjI = I \ FjAn be the induced
filtration. Describe the ideal Ann(grF I) inside grFAn in concrete terms.


