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Lecture 6: February 20

General setup. We start working on the proof of the theorem from last time,
comparing the two notions of dimension d

B(M) (with respect to the Bernstein
filtration) and d

deg(M) (with respect to the degree filtration). In order to make
the result more useful, and to simplify the notation, we are going to work in the
following more general setting.

Let R be a ring with 1. We assume that R is filtered; as before, this means that
R comes with an exhaustive increasing filtration F•R, with

{0} = F�1R ✓ F0R ✓ F1R ✓ · · · ,

such that 1 2 F0R and FiR·FjR ✓ Fi+jR for all i, j � 0. This makes F0R a subring
of R. We define S = grF R to be the associated graded ring, with Sj = FjR/Fj�1R,
and with the product defined by (r + FiR) · (r0 + FjR) = (rr0 + Fi+jR); note that
F0R = S0 is also a subring of S. Generalizing from what happens in the case
R = An, we make the following two assumptions about S:

(A) S is a commutative noetherian ring.
(B) S is regular of dimension dimS = 2n.

As in Lecture 2, the assumption (A) implies that R is left noetherian; moreover,
the subring F0R = S0 is also commutative and noetherian. The condition in (B)
means concretely that for every maximal ideal m ✓ S, the localization Sm is a
regular local ring of dimension 2n, in the sense that

dimS/m m/m2 = dimSm = 2n.

This implies that every finitely generated Sm-module has a free resolution of length
at most 2n; in fact, by a theorem of Serre, the two things are equivalent to each
other. The geometric meaning of the condition in (B) is of course that the scheme
SpecS is nonsingular of dimension 2n.

Example 6.1. Take R = An, either with the Bernstein filtration F
B
• An or the degree

filtration F
deg
• An. In both cases, S is the polynomial ring in 2n variables.

Now let M be a finitely generated left R-module. As in Lecture 3, we have
the notion of a compatible filtration F•M . Recall that this means that F•M is
an exhaustive increasing filtration of M , such that FiR · FjM ✓ Fi+jM for every
i, j � 0, and such that each FjM is finitely generated over the commutative ring
F0R. As before, the filtration is called good if the associated graded module grFM
is finitely generated over S = grF R. Every finitely generated R-module has a good
filtration. As in the case of An, one shows that the ideal

J(M) =
q
AnnS(grFM)

is independent of the choice of good filtration F•M . It is easy to see that a prime
ideal P ✓ S contains J(M) if and only if the localized module MP = SP ⌦S M

is nonzero. The geometric interpretation is that the finitely generated S-module
grFM defines a coherent sheaf on the scheme SpecS, and the closed subscheme
defined by the ideal J(M) is the support of this sheaf.

Definition 6.2. Let M be a finitely generated left R-module. We set

d(M) = dimS/J(M) = dimSupp(grFM)

j(M) = min
�
j � 0

�� ExtjR(M,R) 6= 0
 

The theorem I stated last time holds in this generality.
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Theorem 6.3. Let (R,F•R) be a filtered ring satisfying the two conditions in (A)

and (B). Then one has

d(M) + j(M) = dimS

for every finitely generated left R-module M .

This immediately implies the result I stated last time. Take R = An, and suppose
that M is a finitely generated left An-module. The definition of the invariant j(M)
does not mention any filtrations, and so it is the same no matter what filtration on
R we consider. If we take F•R = F

B
• An, we get

d
B(M) + j(M) = 2n,

and if we take F•R = F
deg
• An, we get

d
deg(M) + j(M) = 2n.

The two equations together give us the desired equality d
B(M) = d

deg(M).

The commutative case. The proof of Theorem 6.3 is going to take some time.
Let us first consider what happens in the commutative case. In the general setting
from above, R is of course allowed to be commutative; but to avoid any confusion,
let me stick to the notation S for the commutative noetherian ring.

Proposition 6.4. Let S be a commutative noetherian ring, regular of dimension

2n. For any finitely generated S-module M , set J(M) =
p
AnnS M and define

d(M) = dimS/J(M) and j(M) = min
�
j � 0

�� ExtjS(M,S) 6= 0
 

Then the following is true:

(a) If ExtjS(M,S) 6= 0, then 2n� d(M)  j  2n.

(b) One has d
�
ExtjS(M,S)

�
 2n� j for every j � 0.

(c) One has d
�
Extj(M)

S (M,S)
�
= d(M).

(d) The identity d(M) + j(M) = 2n holds.

Proof. Let me try to give at least an idea of the proof (without dotting all the i’s).
The first step is to reduce to the case where S is a regular local ring. We can test
whether or not ExtjS(M,S) is zero by localizing at all maximal ideals of M . Let
m ✓ S be any maximal ideal containing J(M); in terms of the scheme SpecS, we
are choosing a closed point on the support of M . Then one has

Sm ⌦S ExtjS(M,S) ⇠= ExtjSm

�
Sm ⌦S M,Sm

�
.

After replacing S by its localization, and M by Sm ⌦S M , we can therefore assume
that S is a regular local ring of dimension 2n. Geometrically, this means that we
are working locally near a point of SuppM .

We prove (a) and (b) by induction on d = dimS/J(M) � 0. When d = 0, the
fact that S is local implies that J(M) = m. Since M is finitely generated, one has
m`

M = 0 for some ` � 0. By considering the chain of submodules M ◆ mM ◆

m2
M ◆ · · · ◆ m`

M = {0} and the long exact sequence for Ext-modules, we reduce
to the case where mM = 0. Now M is finitely generated over the field S/m, and
so we further reduce to the case where M = S/m is the residue field of the local
ring. Since S is regular, the Koszul complex (for any system of 2n generators for
the maximal ideal) resolves S/m; from this resolution, one obtains

ExtjS(S/m, S) =

(
S/m if j = 2n,

0 if j 6= 2n.
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This establishes (a) and (b) in the case d = 0. For the inductive step, it su�ces
(with a little bit of extra work) to consider the case where there is an element f 2 m
that is not a zero-divisor on M . We then have a short exact sequence

0 ! M
f
�! M ! M/fM ! 0,

and d(M/fM) = d � 1. The geometric picture is that SuppM is a closed subset
of dimension d, and that the hypersurface defined by f intersects it in a subset of
dimension d � 1; the S-module M/fM is of course representing the restriction of
M to the hypersurface. Define

E
j = ExtjS(M,S) and F

j = ExtjS(M/fM,S).

By induction, we have F
j = 0 unless 2n � d � 1  j  2n, and d(F j)  2n � j.

The long exact cohomology sequence for Ext-modules gives

· · · ! F
j
! E

j f
�! E

j
! F

j+1
! · · · .

If j 62 {2n� d, . . . , 2n}, then we have F
j = F

j+1 = 0, and so multiplication by f is
an isomorphism from E

j to itself. Since E
j is a finitely generated S-module, and

f 2 m, this implies Ej = 0 by Nakayama’s lemma. This proves (a). Also from the
exact sequence, Ej

/fE
j is isomorphic to a submodule of F j+1, and therefore

2n� (j + 1) � d(F j+1) � d(Ej
/fE

j) � d(Ej)� 1,

which proves (b).
Now we turn to (c). From (a), we get j(M) � 2n� d(M). Combined with (b),

this gives
d(Ej)  2n� j  2n� j(M)  d(M),

with strict inequality for j > j(M). Assume for the sake of contradiction that
d(Ej(M)) < d(M). Then d(Ej) < d(M) for every j � 0. Setting

E =
2nM

j=2n�d(M)

E
j
,

this gives d(E) < d(M), and therefore the ideal J(E) must be strictly bigger than
J(M). After localizing at an element f 2 J(E) \ J(M), we achieve that M 6= 0
but ExtjS(M,S) = 0 for every j � 0. Now one can show (as an exercise) that this
contradicts the fact that M is finitely generated.

It remains to deduce (d). We have already seen that j(M)  2n � d(M). The
reverse inequality follows from (c) and (b), because

d(M) = d(Ej(M))  2n� j(M).

This completes the proof. ⇤
Filtered resolutions. Now we return to the case where M is a finitely generated
left R-module. Choose a good filtration F•M . Proposition 6.4, applied to the
finitely generated S-module grFM , gives

d(grFM) + j(grFM) = 2n.

Obviously, we have J(M) =
p
AnnS(grFM) = J(grFM), and therefore

d(M) = dimS/J(M) = d(grFM).

The identity d(M) + j(M) = 2n in Theorem 6.3 is therefore equivalent to

j(M) = j(grFM).

In order to prove the theorem, we therefore need to understand the relationship
between ExtjR(M,R) and ExtjgrFM (grFM, grF R). We will see next time that this
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involves a spectral sequence. To set it up, we need a resolution of M by free
R-modules that takes into account the good filtration F•M .

Proposition 6.5. Let (M,F•M) be a finitely generated R-module with a good

filtration. Then there exists a free resolution

· · · ! L2 ! L1 ! L0 ! M ! 0

where each (Lj , F•Lj) is a free R-module with a good filtration, and the di↵erentials

in the resolution respect the filtrations. Moreover,

(a) each grFLj is free over S, of the same rank as Lj, and

(b) the complex of S-modules

· · · ! grFL2 ! grFL1 ! grFL0 ! grFM ! 0

is exact.

Proof. For any e 2 Z, define R(e) = R, but with the good filtration FjR(e) =
Fj+eR. We are going to construct a resolution in which each Lj is a direct sum of
copies of R(e) for various values of e.

We start by building L0. Since grFM is a finitely generated graded S-module, we
can choose homogeneous generators [m1], . . . , [mr], of degrees e1, . . . , er, meaning
that mi 2 FeiM . Then

grFj M =
rX

i=1

Sj�ei [mi],

and an easy argument shows that therefore

FjM =
rX

i=1

Fj�eiR ·mi

for every j � 0. This means exactly that we have a surjective morphism of left
R-modules

L0 =
rM

i=1

R(�ei) ! M

compatible with the good filtrations on both terms, such that grFL0 ! grFM is
also surjective. Let M 0 be the kernel of L0 ! M , with the induced filtration. Then
the sequence

0 ! grFM 0
! grFL0 ! grFM ! 0

is short exact, and since S is noetherian, it follows that grFM 0 is finitely generated;
in other words, M 0 is finitely generated, and F•M

0 is a good filtration. Now apply
the same argument to (M 0

, F•M
0) to construct L1, and continue step by step to

create the desired free resolution for M . ⇤

Let · · · ! L2 ! L1 ! L0 be a filtered free resolution of M with the properties in
the proposition. If we set L⇤

j = HomR(Lj , R), then the complex of right R-modules

0 ! L
⇤
0 ! L

⇤
1 ! L

⇤
2 ! · · ·

can be used to compute ExtjR(M,R). In fact, each term in this complex again has
a natural compatible filtration (in the sense of right R-modules).

Definition 6.6. Let L be a finitely generated left R-module with a good filtration
F•L. On the right R-module L

⇤ = HomR(L,R), we define

FjL
⇤ =

�
� 2 L

⇤ �� �(FiL) ✓ Fi+jR for every i � 0
 

for every j 2 Z.
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Lemma 6.7. Suppose that L is a finitely generated left R-module with a good

filtration F•L. Then L
⇤
is a finitely generated right R-module, and the filtration

F•L
⇤
is again good.

Proof. Since L is finitely generated, L⇤ is clearly again finitely generated. It is easy
to see that FjL

⇤
· FkR ✓ Fj+kL

⇤. Indeed, if � 2 FjL
⇤ and r 2 FkR, then we have

(� · r)(x) = �(x) · r

and this belongs to Fi+jR · FkR ✓ Fi+(j+k)R. We also need to prove that the
filtration on L

⇤ is exhaustive. Let � 2 HomR(L,R) be arbitrary. Since the filtration
on L is good, there exists some j0 � 0 such that Fj+j0L = FjR · Fj0L for every
j � 0. Since � is left R-linear, we get

�(Fj+j0L) ✓ FjR · �(Fj0L).

Now Fj0L is finitely generated over F0R, and therefore �(Fj0L) ✓ Fj1R for some
j1 � 0. We now obtain

�(Fj+j0L) ✓ FjR · Fj1R ✓ Fj+j1R,

which is enough to conclude that � 2 Fj1L
⇤. The proof that the filtration F•L

⇤ is
good is left as an exercise. ⇤
Exercises.

Exercise 6.1. Let S be a local ring, M a finitely generated S-module. Suppose that
ExtjS(M,S) = 0 for every j � 0. Prove that M = 0.

Exercise 6.2. Let L = R(`), as a left R-module. Show that L
⇤ is isomorphic to

R(�`) as a right R-module (with the filtration defined in class).

Exercise 6.3. Let L be a finitely generated left R-module with a good filtration
F•L. Show that the natural morphism

grFL⇤
! HomS

�
grFL, S)

is injective, and use this to prove that grFL⇤ is finitely generated over S.


