
31

Lecture 7: February 25

Review from last time. Let me briefly recall where we are at. The general setting
is that R is a (non-commutative) ring with 1, endowed with a filtration F•R, such
that the associated graded ring S = grF R is commutative and nonsingular of
dimension dimS = 2n. The prototypical example is of course R = An(K), with S

being the polynomial ring in 2n variables. Given a finitely generated left R-module
M , together with a good filtration F•M , we are trying to compare

ExtjR(M,R) and ExtjS(gr
F
M,S).

More precisely, we want to show that the two integers

j(M) = min
�
j � 0

�� ExtjR(M,R) 6= 0
 

j(grFM) = min
�
j � 0

�� ExtjS(gr
F
M,S) 6= 0

 

are always equal to each other. To this end, we had constructed a resolution

(7.1) · · · ! L2 ! L1 ! L0 ! M ! 0

of M by free left R-modules, such that (1) each Lj has a good filtration; (2) the
morphisms in the resolution respect the filtrations; (3) the induced complex

(7.2) · · · ! grFL2 ! grFL1 ! grFL0 ! grFM ! 0

is still exact, and therefore gives a resolution of grFM by free S-modules. In fact,
each Lj was a direct sum of copies of R(e), for di↵erent values of e 2 Z, where
R(e) = R as a left R-module, but with the good filtration FiR(e) = Fe+iR.

Now each L
⇤
j = HomR(Lj , R) is a right R-module, and the j-th cohomology of

the complex of right R-modules

0 ! L
⇤
0 ! L

⇤
1 ! L

⇤
2 ! · · ·

is equal to ExtjR(M,R). We further showed that each L
⇤
j again has a good filtration

(as a right R-module) – in fact, each L
⇤
j is again a direct sum of copies of R(e),

viewed as a right R-module, by one of the exercises from Lecture 6. One has

grFL⇤
j
⇠= HomS

�
grFL, S

�
,

and because of the exactness of (7.2), it follows that the j-th cohomology of the
complex of graded S-modules

0 ! grFL⇤
0 ! grFL⇤

1 ! grFL⇤
2 ! · · ·

is equal to ExtjS(gr
F
M,S). So our problem comes down to comparing the coho-

mology of a filtered complex to the cohomology of the associated graded complex.
This can be done using the formalism of spectral sequences.

The spectral sequence of a filtered complex. Generally speaking, a spectral

sequence is a sequence of complexes
�
E

•
` , d`

�
,

indexed by ` 2 N. Here each E
•
` is a complex of vector spaces, modules, or whatever,

and the di↵erentials d` : E•
` ! E

•+1
` are morphisms in the appropriate category.

The complex E
•
` is often called the “`-th page” of the spectral sequence. What

makes a sequence of complexes into a spectral sequence is that each E
•
`+1 is obtained

from the previous complex E
•
` by taking cohomology:

E
n
`+1

⇠= H
n
�
E

•
`

�
=

ker
�
d` : En

` ! E
n+1
`

�

im
�
d` : E

n�1
` ! E

n
`

�

Of course, taking cohomology kills the di↵erentials, and so the new di↵erential d`+1

has to come from somewhere else.
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Typically, there is some quantity that one would like to compute, and the initial
page of the spectral sequence is a known (or easily obtained) “approximation” to
this quantity. As ` gets larger, the approximation gets better and better, and things
eventually “converge” to the quantity one is trying to compute. This is of course
just a rough description; I am going to make it more precise later on.

In my opinion, the best example for understanding spectral sequences is the
spectral sequence of a filtered complex. Suppose then that we have a complex
(K•

, d), consisting of vector spaces, modules, or whatever:

· · · ! K
n�1 d

�! K
n d
�! K

n+1
! · · ·

We are interested in computing the cohomology

H
n(K•) =

ker
�
d : Kn

! K
n+1

�

im
�
d : Kn�1 ! Kn

�

of this complex. Suppose also that the complex is filtered, meaning that each K
n

has an increasing filtration F•K
n, possibly infinite in both directions,

· · · ✓ FjK
n
✓ Fj+1K

n
✓ · · ·

that is compatible with the di↵erentials in the complex, meaning that d(FjK
n) ✓

FjK
n+1. We also assume that

(7.3)
[

j2Z
FjK

n = K
n and FjKn = 0 for j ⌧ 0.

The compatibility with the di↵erential means that each FjK
• is a subcomplex of

K
•, and so we obtain a filtration on the cohomology of K• by setting

FjH
n(K•) = im

⇣
H

n(FjK
•) ! H

n(K•)
⌘
.

In fact, it is not hard to see that

FjH
n(K•) =

FjK
n
\ ker d+ d(Kn�1)

d(Kn�1)
⇠=

FjK
n
\ ker d

FjK
n \ d(Kn�1)

.

and hence that that the associated graded object is given by

grFj H
n(K•) ⇠=

FjK
n
\ ker d

Fj�1K
n \ ker d+ FjK

n \ d(Kn�1)
.

The spectral sequence is going to let us compute not Hn(K•) itself, but the graded
pieces for the above filtration. The first approximation to this – and the starting
point for the spectral sequence – is the associated graded complex grFK•, with the
induced di↵erential, and terms

· · · ! grFKn�1 d
�! grFKn d

�! grFKn+1
! · · ·

Again, it is not hard to show that

H
n
�
grFj K

•� =
ker

�
d : grFj K

n
! grFj K

n+1
�

im
�
d : grFj K

n�1 ! grFj K
n
� ⇠=

FjK
n
\ d

�1(Fj�1K
n+1)

Fj�1K
n + d(FjK

n)
.

Note that this is usually not the same as grFj H
n(K•).

Example 7.4. Here is a typical example of a filtered complex. Let (A,m) be a local
ring, and suppose that K

• is a complex of free A-modules of finite rank. We can
filter each K

n by powers of the maximal ideal,

K
n
◆ mK

n
◆ m2

K
n
◆ · · · ,



33

which amounts to setting F0K
n = K

n and F�jK
n = mj

K
n for j � 0. Here the

second condition in (7.3) does not hold, but it turns out that one can weaken this
to the condition that \

j2Z
(FjK

n + L) = L

for every submodule L ✓ Kn, which does hold in this example (by Krull’s theorem).
In particular, the intersection of all FjK

n equals zero, which makes sense if we think
of elements of mj as functions that vanish to order j; going further down in the
filtration on K

n therefore means getting closer to zero.

Example 7.5. The long exact sequence in cohomology is a toy example of a spectral
sequence. Suppose that we just have one subcomplex K

•
0 ✓ K

•. Together with the
quotient complex, this makes a short exact sequence

0 ! K
•
0 ! K

•
! K

•
1 ! 0

and so we get a long exact sequence in cohomology:

· · · ! H
n�1

�
K

•
1

�
! H

n
�
K

•
0

�
! H

n
�
K

•�
! H

n
�
K

•
1

�
! H

n+1
�
K

•
0

�
! · · ·

This tells us how the cohomology of K• is related to the cohomology of the subcom-
plex and the quotient complex: there are additional maps H

n(K•
1 ) ! H

n+1(K•
0 ),

and the two graded pieces of Hn(K•) are the cokernel respectively kernel of these
maps. If the filtration is longer, then the picture is still similar, but it takes more
steps to get from the cohomology of the associated graded complex to the associated
graded of the cohomology of K•.

As explained above, we may think of elements of FjK
n as being “close to zero”

when j ⌧ 0. The idea behind the spectral sequence is to “approximate” the
condition x 2 FjK

n and dx = 0 by the weaker condition dx 2 Fj�`K
n, and then

increasing the value of ` � 0. In other words, we are approximating FjK
n
\ ker d

by the decreasing sequence of submodules FjK
n
\ d

�1(Fj�`K
n+1) for ` � 0; this

makes sense because of the condition in (7.3). With this in mind, we can now give
the precise definition of the spectral sequence of a filtered complex.

For each n, j 2 Z and each ` 2 N, we define

Z
n
`,j = FjK

n
\ d

�1
�
Fj�`K

n+1
�
.

In other words, an element x 2 FjK
n belongs to Z

n
`,j i↵ dx 2 Fj�`K

n+1. By

construction, the di↵erential d : Kn
! K

n+1 induces a morphism

d` : Z
n
`,j ! Z

n+1
`,j�`, x 7! dx.

Similarly, for each n, j 2 Z and each ` 2 N, we define

B
n
`,j = Z

n
`,j \

⇣
Fj�1K

n + d
�
Fj+`�1K

n�1
�⌘

= Fj�1K
n
\ d

�1
�
Fj�`K

n+1
�
+ FjK

n
\ d

�
Fj+`�1K

n�1
�

= Z
n
`�1,j�1 + d

�
Z

n�1
`�1,j+`�1

�
.

We can then form the quotient

E
n
`,j = Z

n
`,j/B

n
`,j ,

and observe that d` maps Bn
`,j into B

n+1
`,j�`, and therefore induces a morphism

d` : E
n
`,j ! E

n+1
`,j�`

with the property that d` � d` = 0.
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To obtain a complex (E•
` , d`), we consider the graded modules

E
n
` =

M

j2Z
E

n
`,j .

By construction, the di↵erential d` : En
` ! E

n+1
` reduces the degree by `.

Example 7.6. For ` = 0, we have

Z
n
0,j = FjK

n and B
n
0,j = Fj�1K

n
,

since d(FjK
n) ✓ FjK

n+1 by assumption. Consequently,

E
n
0,j =

FjKn

Fj�1Kn
= grFj K

n
,

with di↵erential d0 induced by d. Given (7.3), it also makes sense to set

Z
n
1,j = FjK

n
\ ker d and B

n
1,j = Fj�1K

n
\ ker d+ FjK

n
\ d

�
K

n�1
�
,

which extends the above notation (formally) to ` = 1. Then

E
n
1,j =

FjK
n

Fj�1K
n \ ker d+ FjK

n \ d(Kn�1)
⇠= grFj H

n(K•),

according to our earlier calculation.

Now let us show that the complexes (E•
` , d`) really form a spectral sequence.

Proposition 7.7. For each n, j 2 Z and each ` 2 N, one has

E
n
`+1,j

⇠= H
n
�
E

•
`,j , d`

�
.

Proof. Set Hn
`,j = H

n(E•
`,j), and recall that this is the cohomology of the complex

Z
n�1
`,j+`/B

n�1
`,j+`

d`
�! Z

n
`,j/B

n
`,j

d`
�! Z

n+1
`,j�`/B

n+1
`,j�`.

We start by defining a function

� : En
`+1,j ! H

n
`,j .

Suppose that x 2 Z
n
`+1,j . Then also x 2 Z

n
`,j and

d`x = dx 2 d
�
Z

n
`+1,j

�
✓ B

n+1
`,j�`,

and so x defines a class �(x) 2 H
n
`,j . This class does not depend on the choice of

representative, because

B
n
`+1,j = Z

n
`+1,j \

⇣
B

n
`,j + d

�
Z

n�1
`,j+`

�⌘

by the lemma below. Indeed, we see that x 2 B
n
`+1,j if and only if its image in H

n
`,j

is zero, and so � is well-defined and injective.
It remains to argue that � is also surjective. Any class in H

n
`,j can be represented

by an element x 2 Z
n
`,j with d`x 2 B

n+1
`,j�`. After unwinding the definitions, this is

saying that x 2 FjK
n and dx 2 Fj�`K

n+1 and

dx = dx
0 + y

for some x
0
2 Fj�1K

n with dx
0
2 Fj�`K

n+1 and some y 2 Fj�`�1K
n+1. Thus

x� x
0
2 FjK

n
\ d

�1
�
Fj�`�1K

n+1
�
= Z

n
`+1,j ,

and after replacing x by x�x
0, we can assume from the beginning that x 2 Z

n
`+1,j .

But this means exactly that the given class is in the image of �. ⇤
Lemma 7.8. One has

B
n
`+1,j = Z

n
`+1,j \

⇣
B

n
`,j + d

�
Z

n�1
`,j+`

�⌘

for every j, n 2 Z and every ` 2 N.
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Proof. Unwinding the definitions shows that

B
n
`,j + d

�
Z

n�1
`,j+`

�
= Fj�1K

n
\ d

�1
�
Fj�`K

n+1
�
+ FjK

n
\ d

�
Fj+`K

n�1
�

and so the intersection with Z
n
`+1,j = FjK

n
\ d

�1(Fj�`�1K
n+1) equals

Fj�1K
n
\ d

�1
�
Fj�`�1K

n+1
�
+ FjK

n
\ d

�
Fj+`K

n�1
�
= B

n
`+1,j . ⇤

In what sense does the spectral sequence of a filtered complex “converge”? Note
that the Z

n
`,j form a decreasing chain of submodules of FjK

n with

Z
n
1,j =

\

`2N
Z

n
`,j .

Proposition 7.7 shows that E
n
`+1,j is a subquotient of En

`,j , but there is in general
no natural morphism from one to the other, which means that one cannot take a
(direct or inverse) limit in the algebraic sense. Fortunately, what happens almost
always in practice is that, for each fixed j, n 2 Z, the modules E

n
`,j stabilize for

su�ciently large `. In fact, one has the following necessary and su�cient condition
for stabilization, in terms of the filtration on the complex.

Proposition 7.9. Fix some n 2 Z. The di↵erential d` : En
` ! E

n+1
` vanishes for

every ` � `0 if, and only if, the filtration satisfies

FjK
n+1

\ d
�
K

n
�
= FjK

n+1
\ d

�
Fj+`0�1K

n
�

for every j 2 Z.

Proof. The di↵erential d` : En
` ! E

n+1
` vanishes for every ` � `0 exactly when

d(Zn
`,j) ✓ B

n+1
`,j�` for every ` � `0 and every j 2 Z. After replacing j by j + `, this

translates into the condition that

FjK
n+1

\ d
�
Fj+`K

n
�

✓ Fj�1K
n+1

\ d
�1
�
Fj�`K

n+2
�
+ FjK

n+1
\ d

�
Fj+`�1K

n
�
,

or after intersecting with d(Fj+`K
n),

FjK
n+1

\ d
�
Fj+`K

n
�
= Fj�1K

n+1
\ d

�
Fj+`K

n
�
+ FjK

n+1
\ d

�
Fj+`�1K

n
�
.

Recursively applying this identity (for ` � `0), and using the fact that the filtration
on K

n is exhaustive, we can rewrite this in the equivalent form

FjK
n+1

\ d
�
K

n
�
= Fj�1K

n+1
\ d

�
K

n
�
+ FjK

n+1
\ d

�
Fj+`0�1K

n
�
.

According to (7.3), there is some j0 2 Z with Fj0K
n+1 = 0. We now get the desired

conclusion by recursively applying the identity above (for j � j0). ⇤
Corollary 7.10. If there is some `0 2 N with the property that

FjK
n+1

\ d
�
K

n
�
= FjK

n+1
\ d

�
Fj+`0�1K

n
�

FjK
n
\ d

�
K

n�1
�
= FjK

n
\ d

�
Fj+`0�1K

n�1
�

for every j 2 Z, then one has E
n
`0

= E
n
1.

For example, one has E
n
1 = E

n
1 exactly when the di↵erential d is strictly com-

patible with the filtration, in the sense that FjK
n
\ d(Kn�1) = d(FjK

n�1) (and
the same condition with n+ 1 in place of n).

Note. I have been using the “natural” indexing for the spectral sequence, where n

is the position in the complex K
•, and j the degree with respect to the filtration on

K
n. For historical reasons, people usually index their spectral sequences di↵erently,

and our En
`,j is usually denoted by E

�j,n+j
` . (This looks more natural in the special

case of a double complex.)
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Application to our problem. Now we return to the case of a finitely generated
left R-module M , endowed with a good filtration F•M . If we apply the spectral
sequence formalism to the complex of right R-modules

0 ! L
⇤
0 ! L

⇤
1 ! L

⇤
2 ! · · · ,

with the good filtration F•L
⇤
j constructed earlier, we obtain a spectral sequence

with E
j
0 = grFL⇤

j and with di↵erential d0 induced by the di↵erential in the original
complex. It follows that

E
j
1 = ExtjS

�
grFM,S

�
,

because the complex in (7.2) is a free resolution of grFM . On the other hand, the
complex in (7.1) is a free resolution of M , and so we get

E
j
1 = grFExtjR(M,R).

Recall that we are trying to prove the identity j(M) = j(grFM). The first thing
we should do is check that the spectral sequence converges, in the sense that each
E

j
` stabilizes for ` � 0. This is a consequence of the following lemma about good

filtrations.

Lemma 7.11. Let (K•
, d) be a complex of left (or right) R-modules, and suppose

that each K
n
has a good filtration F•K

n
such that d(FjK

n) ✓ FjK
n+1

for every

j, n 2 Z. Then for every n 2 Z, there is some j0 2 N such that

FjK
n+1

\ d
�
K

n
�
= FjK

n+1
\ d

�
Fj+j0K

n
�
.

Proof. On the submodule d(Kn) ✓ K
n+1, we have two good filtrations, one induced

by the good filtration on K
n+1, the other by the good filtration on K

n. Let us
denote these by

Fjd(K
n) = FjK

n+1
\ d(Kn) and Gjd(K

n) = d(FjK
n).

The first filtration is good because grF d(Kn) is a submodule of the finitely generated
S-module grFKn+1; the second filtration is good because grGd(Kn) is a quotient
module of the finitely generated S-module grFKn. In both cases, we are using the
fact that S is noetherian. By Corollary 2.15, there is an integer j0 � 0 such that

Fjd(K
n) ✓ Gj+j0d(K

n)

for every j 2 Z. We get the result by intersecting both sides with FjK
n+1. ⇤

Together with the convergence criterion in Corollary 7.10, this shows that En
` =

E
n
1 for ` � 0, and so our spectral sequence does indeed converge. Now recall that

E
j
1 = ExtjS(gr

F
M,S).

We can use the results about Ej
1 from Proposition 6.4, plus the spectral sequence,

to prove the following theorem.

Theorem 7.12. Let M be a finitely generated R-module with a good filtration F•M .

(a) One has j(grFM) = j(M), and thus ExtjR(M,R) = 0 for j < j(grFM).

(b) One has d
�
ExtjR(M,R)

�
 2n� j for every j � 0.

(c) One has d
�
Extj(M)

R (M,R)
�
= 2n� j(M).

Proof. To simplify the notation, let me set j0 = j(grFM), which means that Ej
1 = 0

for all j < j0. According to Proposition 6.4, we have

d(Ej
1)  2n� j

for every j � 0, with equality for j = j0. Here d(M) = dimS/J(M) is the dimension
of the support.
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Since E
j
`+1 is a subquotient of Ej

` , it follows that Ej
` = 0 for j < j0 and ` � 1.

But Ej
1 = E

j
` for ` � 0, and so E

j
1 = 0 for j < j0. Remembering that

E
j
1 = grF ExtjR(M,R),

we deduce that ExtjR(M,R) = 0 for j < j0, and hence that j(M) � j0. This gives
us one half of (a), namely

j(M) � j(grFM).

By the same reasoning, d(Ej
1)  2n� j implies that d(Ej

1)  2n� j, and therefore

d
�
ExtjR(M,R)

�
 2n� j

for every j � 0, which is (b). Lastly, we have d(Ej0
1 ) = 2n� j0, but E

j0�1
1 = 0 and

d(Ej0+1
1 )  2n� j0 � 1. Therefore

E
j0
2

⇠= ker
�
d1 : E

j0
1 ! E

j0+1
1

�
,

and since d(Ej0+1
1 )  2n� j0 � 1, we see that d(Ej0

2 ) = 2n� j0. Continuing in this
way, we get d(Ej0

` ) = 2n� j0 for every ` � 1, and therefore

d
�
Extj0R (M,R)

�
= 2n� j0.

In particular, Extj0R (M,R) 6= 0, and so j0 � j(M). This gives us the other inequality

j(grFM) � j(M),

and so (a) and (c) are proved. ⇤
Exercises.

Exercise 7.1. Generalize the proof of Proposition 7.9 to the case where the filtration
on each module K

n in the complex satisfies
\

j2Z
(FjK

n + L) = L

for every submodule L ✓ Kn.


