Holonomic modules and duality. Recall that R is a filtered ring, whose associated graded ring $S = \operatorname{gr}^{F} R$ is commutative, noetherian, and nonsingular of dimension dim S = 2n. Last time, we proved the following theorem about finitely generated (left or right) R-modules.

Theorem. Let M be a finitely generated R-module with a good filtration $F_{\bullet}M$.

- (a) One has $j(\operatorname{gr}^F M) = j(M)$, and thus $\operatorname{Ext}_R^j(M, R) = 0$ for $j < j(\operatorname{gr}^F M)$.
- (b) One has $d(\operatorname{Ext}_R^j(M, R)) \leq 2n j$ for every $j \geq 0$.
- (c) One has $d(\operatorname{Ext}_{R}^{j(M)}(M,R)) = 2n j(M).$

As I explained before, the fact that $j(\operatorname{gr}^F M) = j(M)$, together with the identity $d(\operatorname{gr}^F M) + j(M) = 2n$, implies that

$$d(M) + j(M) = 2n$$

for every finitely generated R-module.

Example 8.1. In the case of the Weyl algebra A_n , this says that the two notions of dimension (with respect to the Bernstein filtration and the degree filtration) are the same. Since we know from Bernstein's inequality that $d^B(M) \ge n$ for every nonzero finitely generated A_n -module M, it follows that also $d^{\text{deg}}(M) \ge n$.

Let us now assume that Bernstein's inequality holds: Every finitely generated left or right *R*-module *M* satisfies $d(M) \ge n$, provided that $M \ne 0$. We saw earlier that this holds when $R = A_n$. An equivalent formulation is that every finitely generated left or right *R*-module satisfies $j(M) \le n$, meaning that $\operatorname{Ext}_R^j(M, R) \ne 0$ for some $j \le n$, again provided that $M \ne 0$. Bernstein's inequality, together with the above theorem, has some remarkable consequences.

Corollary 8.2. If M is a finitely generated R-module, then $\operatorname{Ext}_R^j(M, R) = 0$ for j > n.

Proof. Let M be a finitely generated left (or right) R-module. Then each $E^j = \operatorname{Ext}_R^j(M, R)$ is a finitely generated right (or left) R-module, and the theorem gives $d(E^j) \leq 2n - j$. But Bernstein's inequality says that $d(E^j) \geq n$ whenever $E^j \neq 0$, and so the conclusion is that $E^j = 0$ for j > n.

Note that this is completely false for finitely generated S-modules, where Ext^{j} can be nonzero in the range $0 \leq j \leq 2n$.

The most interesting R-modules are clearly those for which the dimension d(M) is minimal (or where the quantity j(M) = 2n - d(M) is maximal). By analogy with the case $R = A_n$, we call such modules holonomic.

Definition 8.3. A finitely generated left (or right) *R*-module *M* is called *holonomic* if either M = 0, or $M \neq 0$ and d(M) = n.

An equivalent definition is that M is holonomic if either M = 0, or $M \neq 0$ and j(M) = n. Since $\operatorname{Ext}_{R}^{j}(M, R) = 0$ for j > n, we obtain the following alternative characterization of holonomic R-modules.

Corollary 8.4. A finitely generated R-module M is holonomic if and only if $\operatorname{Ext}_{R}^{j}(M,R) = 0$ for every $j \neq n$.

Given any holonomic left (or right) R-module M, we therefore get another right (or left) R-module

$$M^* = \operatorname{Ext}_R^j(M, R).$$

This is called the *holonomic dual*. Let us investigate the properties of M^* .

Lemma 8.5. If M is holonomic, then M^* is also holonomic.

Proof. Since j(M) = n, the theorem from last time shows that

$$d(M^*) = d(\operatorname{Ext}_R^{j(M)}(M, R)) = 2n - j(M) = n$$

This says that M^* is again holonomic.

The association $M \mapsto M^*$ is contravariant functor from the category of holonomic left (or right) R-modules to the category of holonomic right (or left) Rmodules. Indeed, given a morphism of left R-modules $f: M \to N$ between two holonomic R-modules M and N, the functoriality of Ext shows that we have a morphism of right R-modules

$$f^* \colon \operatorname{Ext}^n_R(N, R) \to \operatorname{Ext}^n_R(M, R)$$

in the opposite direction, and it is not hard to see that $(f \circ g)^* = g^* \circ f^*$. As a contravariant functor, the holonomic dual is also exact: if

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

is a short exact sequence of holonomic left (or right) R-modules, then the long exact sequence for $\operatorname{Ext}_R^j(-, R)$ becomes a short exact sequence

$$0 \to \operatorname{Ext}_{R}^{n}(M_{3}, R) \to \operatorname{Ext}_{R}^{n}(M_{2}, R) \to \operatorname{Ext}_{R}^{n}(M_{1}, R) \to 0$$

due to the vanishing of $\operatorname{Ext}_R^j(M_i, R)$ for $j \neq n$. In other words,

$$0 \rightarrow M_3^* \rightarrow M_2^* \rightarrow M_1^* \rightarrow 0$$

is again a short exact sequence.

Proposition 8.6. We have $M \cong M^{**}$ for every holonomic left (or right) *R*-module M, and hence the holonomic dual gives an equivalence of categories

(holonomic left R-modules) \cong (holonomic right R-modules)^{op}.

Proof. Let M be a holonomic left R-module. Choose a free resolution

$$\cdots \to L_2 \to L_1 \to L_0 \to M \to 0$$

by free left R-modules of finite rank. The complex of right R-modules

$$0 \to L_0^* \to L_1^* \to L_2^* \to \cdots$$

is then exact except in degree n, where the cohomology is $M^* = \operatorname{Ext}_{R}^{n}(M, R)$. Choose another free resolution

$$\cdots \to K_2 \to K_1 \to K_0 \to M^* \to 0$$

by free right *R*-modules of finite rank. By a general lemma in homological algebra, there is a morphism of complexes of right R-modules

$$\cdots \longrightarrow K_1 \xrightarrow{d} K_0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow f_1 \qquad \qquad \downarrow f_0 \qquad \qquad \downarrow$$

$$\cdots \longrightarrow L_{n-1}^* \xrightarrow{d} L_n^* \xrightarrow{d} L_{n+1}^* \longrightarrow \cdots$$

that induces an isomorphism on cohomology. (Such morphisms are called quasiisomorphisms.) Let me briefly recall the construction. Since M^* is the cohomology in degree n of the complex, we have $M^* = \ker d / \operatorname{im} d$, and so the submodule ker $d \subseteq L_n^*$ maps onto M^* . Because K_0 is a free *R*-module, we can find a lifting

indicated by the dashed arrow, and we denote by $f_0: K_0 \to L_n^*$ the composition. By construction, $d \circ f_0 = 0$, and so the first square in the diagram below commutes:

$$\cdots \longrightarrow K_1 \xrightarrow{d} K_0 \longrightarrow 0 \longrightarrow \cdots$$
$$\downarrow^{f_0} \qquad \downarrow$$
$$\cdots \longrightarrow L_{n-1}^* \xrightarrow{d} L_n^* \xrightarrow{d} L_{n+1}^* \longrightarrow \cdots$$

Since the composition $K_1 \to K_0 \to M^*$ is zero, the morphism $f_0 \circ d$ maps K_1 into the submodule im $d \subseteq \ker d \subseteq L_n^*$. This submodule is the image of L_{n-1}^* , and because K_1 is a free *R*-module, and so we can again find a lifting

which now makes the second square in the diagram commute:

$$\cdots \longrightarrow K_1 \xrightarrow{d} K_0 \longrightarrow 0 \longrightarrow \cdots$$
$$\downarrow^{f_1} \qquad \downarrow^{f_0} \qquad \downarrow \\ \cdots \longrightarrow L_{n-1}^* \xrightarrow{d} L_n^* \xrightarrow{d} L_{n+1}^* \longrightarrow \cdots$$

Continuing in this manner produces the desired morphism of complexes. If we now apply the functor $\operatorname{Hom}_R(-, R)$ a second time, we obtain a morphism of complexes of left *R*-modules

One can show that this morphism still induces an isomorphism on cohomology. Now the complex in the first row is a resolution of M, and therefore only has cohomology at L_0 . Likewise, because M^* is holonomic, the complex in the second row only has cohomology at K_n^* , where the cohomology is M^{**} . In this way, we obtain a morphism of left R-modules $M \to M^{**}$, which is an isomorphism by the comment above.

We can use this result to compare the characteristic varieties of M and M^* .

Corollary 8.7. If M is holonomic, then $Ch(M) = Ch(M^*)$.

Proof. Choose a good filtration $F_{\bullet}M$ and recall that $\operatorname{Ch}(M)$ is the closed subset of Spec S defined by the radical of $\operatorname{Ann}_{S}(\operatorname{gr}^{F}M)$, or equivalently, the support of the finitely generated S-module $\operatorname{gr}^{F}M$. The filtered free resolution from last time induces a good filtration on $M^{*} = \operatorname{Ext}_{R}^{n}(M, R)$; in fact, using the spectral sequence from last time, $E_{\infty}^{n} = \operatorname{gr}^{F}\operatorname{Ext}_{R}^{n}(M, R) = \operatorname{gr}^{F}M^{*}$. Since the spectral sequence converges, E_{∞}^{n} is a subquotient of $E_{1}^{n} = \operatorname{Ext}_{S}^{n}(\operatorname{gr}^{F}M, S)$, and therefore

$$\operatorname{Ch}(M^*) = \operatorname{Supp} E_{\infty}^n \subseteq \operatorname{Supp} E_1^n \subseteq \operatorname{Supp}(\operatorname{gr}^F M) = \operatorname{Ch}(M)$$

But then we also have $\operatorname{Ch}(M) = \operatorname{Ch}(M^{**}) \subseteq \operatorname{Ch}(M^*)$, and so the two characteristic varieties are in fact equal.

The existence of the holonomic dual gives another explanation for the fact that the category of holonomic A_n -modules is both artinian and noetherian. In fact, recall that we showed earlier, using the notion of multiplicity, that every ascending or descending chain of submodules of a holonomic A_n -module M has finite length (bounded by the multiplicity of M). Since the holonomic dual takes ascending chains of submodules of M to descending chains of submodules of M^* , both chain conditions are equivalent in this case. This is again unlike the commutative case.

Exercises.

Exercise 8.1. Let R be a ring with 1. Let A_{\bullet} and B_{\bullet} be two complexes of free R-modules of finite rank. Suppose that we have a morphism of complexes

$$\cdots \longrightarrow A_{n-1} \longrightarrow A_n \longrightarrow A_{n+1} \longrightarrow \cdots$$
$$\downarrow^{f_{n-1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n+1}} \\ \cdots \longrightarrow B_{n-1} \longrightarrow B_n \longrightarrow B_{n+1} \longrightarrow \cdots$$

that induces isomorphisms on cohomology. Show that the same thing is true after applying the functor $(-)^* = \operatorname{Hom}_R(-, R)$: the induced morphism of complexes

$$\cdots \longrightarrow B_{n+1}^* \longrightarrow B_n^* \longrightarrow B_{n+1}^* \longrightarrow \cdots$$

$$\downarrow f_{n+1}^* \qquad \downarrow f_n^* \qquad \downarrow f_{n-1}^*$$

$$\cdots \longrightarrow A_{n+1}^* \longrightarrow A_n^* \longrightarrow A_{n+1}^* \longrightarrow \cdots$$

is again a quasi-isomorphism. (Hint: Use the mapping cone. Show that the mapping cone of f is an exact complex of free R-modules, and therefore homotopic to zero. Show that this property is preserved by the functor $\operatorname{Hom}_R(-, R)$, and conclude that the morphism between the dual complexes is also a quasi-isomorphism.)