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Lecture 9: March 4

Local coordinates on algebraic varieties. Let X be an algebraic variety over
a field k, with structure sheaf OX . More precisely, X is a scheme of finite type over
k, meaning that for every a�ne open subset U ✓ X, the ring of functions �(U,OX)
is a finitely generated k-algebra, or in other words, a quotient of a polynomial ring.
We say that X is nonsingular of dimension n if, at each closed point x 2 X, the
stalk

OX,x = lim
U3x

�(U,OX)

is a regular local ring of dimension n; in other words, if mx ✓ OX,x denotes the
maximal ideal, then

dimOX,x/mx
mx/m

2
x = n = dimOX,x.

When the field k is perfect (which is always the case in characteristic zero), an
equivalent condition is that the sheaf of Kähler di↵erentials ⌦1

X/k is locally free of
rank n.

Since we are going to need this in a moment, let me briefly review derivations
and Kähler di↵erentials. Let A be a finitely generated k-algebra. A derivation

from A into an A-module M is a k-linear mapping D : A ! M such that �(fg) =
f�(g) + g�(f) for every f, g 2 A. We denote by Derk(A,M) the set of all such
derivations; this is an A-module in the obvious way. In the special case M = A,
we use the notation Derk(A) for the derivations from A to itself. In view of the
formula �(fg) = f�(g) + g�(f), such a derivation is the algebraic analogue of a
vector field, acting on the set of functions in A. We have Derk(A) ✓ Endk(A), and
one can check that if �1, �2 2 Derk(A), then their commutator

[�1, �2] = �1 � �2 � �2 � �1 2 Endk(A)

is again a derivation. It is the analogue of the Lie bracket on complex manifolds.
The module ofKähler di↵erentials ⌦1

A/k represents the functorM 7! Derk(A,M),
in the sense that one has a functorial isomorphism

Derk(A,M) ⇠= HomA

�
⌦1

A/k,M
�
.

In other words, ⌦1
A/k is an A-module, together with a derivation d : A ! ⌦1

A/k, such

that every derivation � 2 Derk(A,M) factors uniquely as � = �̃ � d for a unique
A-linear map �̃ : ⌦1

A/k ! M . Concretely, ⌦1
A/k can be constructed by taking the

free A-module on the set of generators df , for f 2 A, and imposing the relations
d(fg) = fdg + gdf and d(f + g) = df + dg for every f, g 2 A, and df = 0 for every
f 2 k. By construction, one has

Derk(A) ⇠= HomA(⌦
1
A/k, A),

which makes the module of Kähler di↵erentials dual to the module of derivations.
Globally, ⌦1

X/k is a coherent sheaf of OX -modules, such that for every a�ne open

subset U ✓ X, one has �(U,⌦1
X/k) = ⌦1

A/k, where A = �(U,OX). There is again

a universal derivation d : OX ! ⌦1
X/k. Think of ⌦1

X/k as an algebraic analogue of
the sheaf of holomorphic one-forms on a complex manifold. The tangent sheaf

TX = HomOX (⌦1
X/k,OX)

is defined as the dual of the sheaf of Kähler di↵erentials; on a�nes, one has
�(U,TX) = Derk(A), using the notation from above. This is an algebraic ana-
logue of the sheaf of holomorphic tangent vector fields on a complex manifold.

Now suppose that X is nonsingular of dimension n, or equivalently, that ⌦1
X/k is

locally free of rank n. At every closed point x 2 X, one can choose local coordinates
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in the following way: there is an a�ne open neighborhood U of x, together with n

regular functions x1, . . . , xn 2 �(U,OX), such that

⌦1
X/k

��
U
⇠=

nM

i=1

OX

��
U
· dx i.

Dually, we have derivations @1, . . . , @n 2 Derk
�
�(U,OX)

�
, such that

TX

��
U
⇠=

nM

i=1

OX

��
U
· @i.

This says that df = @1(f) · dx 1 + · · · + @n(f) · dxn for every f 2 �(U,OX), and so
the derivation @i plays the role of the partial derivative operator @/@xi. One can
choose the functions x1, . . . , xn 2 �(U,OX) in such a way that they generate the
maximal ideal mx ✓ OX,x. Keep in mind that the morphism U ! An

k defined by
the local coordinates is étale, but not usually an embedding (because open sets in
the Zariski topology are too big).

The sheaf of di↵erential operators. Let X be a nonsingular algebraic variety.
Our goal is to define the sheaf of di↵erential operators DX , which is a global ana-
logue of the Weyl algebra An(k). This will be a quasi-coherent sheaf of OX -modules
DX , together with an increasing filtration F•DX by coherent OX -modules, where
FjDX consists of di↵erential operators of order  j.

We start by considering the a�ne case. So let U ✓ X be an a�ne open subset,
and set A = �(U,OX), which is a finitely generated k-algebra. We are going to
define an A-module D(A) ✓ Endk(A), whose elements are the algebraic di↵erential
operators of finite order on A. It will satisfy

D(A) =
1[

j=0

FjD(A),

where FjD(A) is the submodule of operators of order j. The idea is that operators
of order 0 should be multiplication by elements in A, and that if P 2 FiD(A) and
Q 2 FjD(A), then their commutator [P,Q] = P � Q � Q � P 2 Endk(A) should
belong to Fi+j�1D(A). This is consistent with what happens for the Weyl algebra.

For an element f 2 A, we also use the symbol f 2 Endk(A) to denote the
operator of multiplication by f . Observe that P 2 Endk(A) is multiplication by
the element P (1) 2 A if and only if P is A-linear if and only if [P, f ] = 0 for every
f 2 A. We can therefore define

F0D(A) =
�
P 2 Endk(A)

�� [P, f ] = 0 for every f 2 A
 
⇠= A.

We then define FjD(A) recursively by saying that

FjD(A) =
�
P 2 Endk(A)

�� [P, f ] 2 Fj�1D(A) for every f 2 A
 
.

This construction of di↵erential operators is due to Grothendieck.

Example 9.1. Let us work out the relationship between F1D(A) and Derk(A). Every
derivation � 2 Derk(A) is also a di↵erential operator of order 1, because

[�, f ](g) = �(fg)� f�(g) = �(f) · g

for every f, g 2 A, which shows that [�, f ] = �(f) 2 F0D(A). Conversely, suppose
that we have some P 2 F1D(A). By definition, for every f 2 A, there exists some
pf 2 A such that [P, f ] = pf . Concretely, this means that

P (fg)� fP (g) = pf · g

for every f, g 2 A. Taking g = 1, we get pf = P (f)� fP (1), and so

P (fg)� fP (g)� gP (f) + fgP (1) = 0.
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It is then easy to check that P � P (1) is a derivation. The conclusion is that

F1D(A) ⇠= A�Derk(A)

with P 2 F1D(A) corresponding to the pair
�
P (1), P � P (1)

�
.

It is easy to see that each FjD(A) is a finitely generated A-module, and that
composition in Endk(A) has the following e↵ect: if P 2 FiD(A) and Q 2 FjD(A),
then P �Q 2 Fi+jD(A) and [P,Q] 2 Fi+j�1D(A). With some more work, one can
prove the following result.

Proposition 9.2. Let A be a finitely generated k-algebra. If A is nonsingular of

dimension n, then the following is true:

(a) As an A-algebra, D(A) ✓ Endk(A) is generated by Derk(A), subject to the

relations [�, f ] = �(f) for every � 2 Derk(A) and every f 2 A.

(b) One has FjD(A)/Fj�1D(A) ⇠= Symj Derk(A) for j � 0.
(c) One has an isomorphism of graded A-algebras

grFD(A) =
1M

j=0

FjD(A)/Fj�1D(A) ⇠= SymDerk(A)

between the associated graded algebra of D(A) and the symmetric algebra

on Derk(A).

Here, for any A-module M , the j-th symmetric power Symj
M is the A-module

obtained by quotienting M ⌦A · · ·⌦A M by the submodule generated by elements
of the form m1 ⌦ · · ·mj � m�(1) ⌦ · · ·m�(j), for all permutations � 2 Sj . The
symmetric algebra on M is the graded A-algebra

SymM =
1M

j=0

Symj
M.

It has the following universal property: if B is any A-algebra, then every morphism
of A-modules M ! B extends uniquely to a morphism of A-algebras SymM ! B.
For example, one has SymA

�r ⇠= A[x1, . . . , xr].
Let us give a concrete description of di↵erential operators in local coordinates.

Let U ✓ X be an a�ne open, with local coordinates x1, . . . , xn, and set A =
�(U,OX). The A-module Derk(A) is free of rank n, generated by the derivations
@1, . . . , @n, and so D(A) is freely generated over A by products of these. In other
words, every P 2 FjD(A) can be written uniquely in the form

P =
X

|↵|j

f↵@
↵
,

where @
↵ = @

↵1
1 · · · @

↵n
n and where f↵ 2 A. The only di↵erence with the case of

the Weyl algebra is that the coe�cients now belong to the ring A, instead of to the
polynomial ring.

Example 9.3. In the case A = k[x1, . . . , xn], we have D(A) = An(k), and the
filtration F•D(A) agrees with the order filtration.

Now we would like to say that DX is the unique sheaf of OX -modules with the
property that �(U,DX) = D

�
�(U,OX)

�
for every a�ne open U ✓ X. For this to

work, one needs the following compatibility result.

Proposition 9.4. Let A be a finitely generated k-algebra that is nonsingular of

dimension n. For nonzero f 2 A, set Af = A[f�1]. Then one has isomorphisms

D(Af ) ⇠= Af ⌦A D(A) and FjD(Af ) ⇠= Af ⌦A FjD(A).
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The content of this is that every di↵erential operator on Af extends, after mul-
tiplication by a su�ciently large power of f , to a di↵erential operator on A. (The
analogous result for Kähler di↵erentials is that ⌦1

Af/k
⇠= Af ⌦A ⌦1

A/k; you can find

this in Hartshorne, who quotes Matsumura for the proof.)

Note. Unless X is a�ne, �(X,DX) does not embed into the k-linear endomor-
phisms of �(X,OX). For example, we shall see below that there are many algebraic
di↵erential operators on Pn

k , but since Pn
k is proper, every regular function on Pn

k is
constant. This is why di↵erential operators are defined locally.

The proposition implies that DX is a quasi-coherent sheaf of OX -modules, and
that each FjDX is coherent. Indeed, recall that a sheaf of OX -modules F is called
quasi-coherent if, for every a�ne open subset U ✓ X, the restriction of F to U

is the sheaf of OX -modules associated with the �(U,OX)-module �(U,F ). On an
a�ne scheme SpecA, a necessary and su�cient condition for F to be quasi-coherent
is that

�
�
D(f),F

�
⇠= Af ⌦A �(SpecA,F )

for every f 2 A, where D(f) ✓ SpecA denotes the principal a�ne open defined by
f . When X is noetherian, which is the case for schemes of finite type over a field, F

is coherent if each �(U,F ) is finitely generated over �(U,OX). So the proposition
says exactly that DX is quasi-coherent and that each FjDX is coherent.

The isomorphisms in Proposition 9.2 globalize as follows. One has F0DX = OX ,
and for every j � 0, one has

grFj DX = FjDX/Fj�1DX
⇠= Symj

TX ,

where TX is the tangent sheaf. One also has an isomorphism of graded OX -algebras

grFDX
⇠= SymTX ,

and so the associated graded algebra of DX is again commutative, as in the case
of the Weyl algebra. Since X is nonsingular, TX is locally free of rank n, and the
symmetric algebra on TX can be interpreted as the sheaf of algebraic functions on
the cotangent bundle. Let us denote by p : T ⇤

X ! X the cotangent bundle of X,
with its natural projection to X. This is again a nonsingular algebraic variety, now
of dimension 2n, locally isomorphic to the product of X and a�ne space An

k . By the
correspondence between vector bundles and locally free sheaves (from Hartshorne’s
book), one has an isomorphism

T
⇤
X ⇠= V(TX) = SpecX SymTX ,

and therefore p⇤OT⇤X
⇠= SymTX as OX -algebras. This is why people sometimes

refer to DX as a “noncommutative deformation” of the cotangent bundle.

Example 9.5. Let us consider the example X = Pn
k . The k-vector space �(X,DX)

of global di↵erential operators on projective space is infinite-dimensional. There
are several ways to see this. One way is by diagram chasing. We have F0DX = OX ,
and therefore �(X,F0DX) = k. For each j � 1, we have a short exact sequence

0 ! Fj�1DX ! FjDX ! Symj
TX ! 0.

One can show by induction that H1(X,FjDX) = 0 for j � 0, and so

H
0(X,FjDX)/H0(X,Fj�1DX) ⇠= H

0(X, Symj
TX).

These vector spaces can then be computed using the Euler sequence

0 ! OX ! OX(1)�(n+1)
! TX ! 0.

For example, dimH
0(X,TX) = (n+ 1)2 � 1, and so dimH

0(X,F1DX) = (n+ 1)2.
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Another way is to use the standard open covering X = U0 [U1 [ · · ·[Un. Since
each Ui is isomorphic to An

k , one has �(Ui,DX) ⇠= An(k), and so an element of
�(X,DX) can be described by (n+1) elements of the Weyl algebra that are related
to each other by the coordinate transformations among the Ui. (See the exercises.)

The third way is to use the presentation of X as a quotient of An+1
k minus the

origin, by identifying points of Pn
k with lines in An+1

k . Recall how this works in the
case of the Euler sequence. Once n � 1, a vector field on An+1

k minus the origin is
the same thing as a vector field on An+1

k , hence of the form

f0@0 + f1@1 + · · ·+ fn@n,

for polynomials f0, . . . , fn 2 k[x0, . . . , xn]. Such a vector field descends to X if and
only if it is homogeneous of degree 0, where deg xj = 1 and deg @j = �1. At the
same time, the Euler vector field

x0@0 + x1@1 + · · ·+ xn@n

is tangent to the lines through the origin, and therefore descends to the zero vector
field. This shows that �(X,TX) is generated by the (n + 1)2 vector fields xi@j ,
subject to the single relation x0@0 + · · · + xn@n = 0. In the same way, one can
show that �(X,DX) is isomorphic to the space of di↵erential operators on An+1

k
that are homogeneous of degree 0, modulo the ideal generated by the Euler vector
field. Concretely, an element P 2 �(X,FjDX) can be written in the form

P =
X

|↵|=|�|j

c↵x
↵0
0 · · ·x

↵n
n @

�0
0 · · · @

�n
n

and this expression is unique modulo multiples of x0@0+ · · ·+xn@n. The restriction
of P to the standard a�ne open U0 is obtained by setting x0 = 1 and using the
relation @0 = �(x1@1 + · · ·+ xn@n).

Algebraic DX-modules. Let me end with the following definition. An algebraic

D-module on a nonsingular algebraic variety X is a quasi-coherent sheaf of OX -
modules M, together with a (left or right) action by the sheaf of di↵erential opera-
tors DX . In other words, for every a�ne open subset U ✓ X, with A = �(U,OX),
we get an A-module M , together with a (left or right) action by the module of
di↵erential operators D(A).

Exercises.

Exercise 9.1. Show that one has Derk(Af ) ⇠= Af ⌦A Derk(A) for every f 2 A.

Exercise 9.2. For X = Pn
k , compute dimk �(X,FjDX) as a function of j � 0.

Exercise 9.3. Consider the example X = P1
k. If we use the symbol x0 for the

coordinate on U0 = A1
k, and x1 for the coordinate on U1 = A1

k, then �(U0,DX) is
the Weyl algebra on x0 and @0, and �(U1,DX) is the Weyl algebra on x1 and @1.
Using the coordinate change x1 = x

�1
0 , decide when two di↵erential operators

P =
X

i,j

ai,jx
i
0@

j
0 and Q =

X

i,j

bi,jx
i
1@

j
1

have the same restriction to U0 \ U1. Use this to describe the space �(X,DX) of
global di↵erential operators on P1

k.


