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LECTURE 9: MARCH 4

Local coordinates on algebraic varieties. Let X be an algebraic variety over
a field k, with structure sheaf &'x. More precisely, X is a scheme of finite type over
k, meaning that for every affine open subset U C X the ring of functions I'(U, Ox)
is a finitely generated k-algebra, or in other words, a quotient of a polynomial ring.
We say that X is nonsingular of dimension n if, at each closed point x € X, the
stalk

ﬁxw = [1]119?(916 F(U, ﬁx)

is a regular local ring of dimension n; in other words, if m, C Ox , denotes the
maximal ideal, then

. 2 .
dimgy , /m, Mz/my; =n = dim Ox .

When the field k is perfect (which is always the case in characteristic zero), an
equivalent condition is that the sheaf of Kéhler differentials Q% /i 18 locally free of
rank n.

Since we are going to need this in a moment, let me briefly review derivations
and Kahler differentials. Let A be a finitely generated k-algebra. A derivation
from A into an A-module M is a k-linear mapping D: A — M such that §(fg) =
f0(g) + go(f) for every f,g € A. We denote by Dery(A, M) the set of all such
derivations; this is an A-module in the obvious way. In the special case M = A,
we use the notation Derg(A) for the derivations from A to itself. In view of the
formula 6(fg) = fd(g) + gd(f), such a derivation is the algebraic analogue of a
vector field, acting on the set of functions in A. We have Dery(A) C Endy(A), and
one can check that if 41, d2 € Der(A), then their commutator

[01,02) = 61 062 — 65 0 61 € Endy(A)
is again a derivation. It is the analogue of the Lie bracket on complex manifolds.

The module of Kdhler differentials QY /i Tepresents the functor M +— Der (A, M),
in the sense that one has a functorial isomorphism

Dery (A, M) = HomA(Qi‘/k,M).

In other words, Q}L‘/k is an A-module, together with a derivation d: A — Q}Mk, such

that every derivation 0 € Dery(A, M) factors uniquely as § = b o d for a unique
A-linear map 4: QY K M. Concretely, QY /p can be constructed by taking the
free A-module on the set of generators df, for f € A, and imposing the relations
d(fg) = fdg + gdf and d(f + g) = df + dg for every f,g € A, and df = 0 for every
f € k. By construction, one has

Dery(A) = HomA(inC7 A),

which makes the module of Kahler differentials dual to the module of derivations.
Globally, Qﬁf Ik is a coherent sheaf of &'x-modules, such that for every affine open

subset U C X, one has T'(U, Q%{/k) = (2114/,€7 where A = T'(U, Ox). There is again
a universal derivation d: Ox — Q3 /- Think of Q% . as an algebraic analogue of

the sheaf of holomorphic one-forms on a complex manifold. The tangent sheaf
yx = 'HO’ITL@’X (Qﬁ(/kv ﬁx)

is defined as the dual of the sheaf of Kahler differentials; on affines, one has
(U, Ix) = Dery(A), using the notation from above. This is an algebraic ana-
logue of the sheaf of holomorphic tangent vector fields on a complex manifold.
Now suppose that X is nonsingular of dimension n, or equivalently, that Qﬁ( Ik is
locally free of rank n. At every closed point x € X, one can choose local coordinates
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in the following way: there is an affine open neighborhood U of z, together with n
regular functions z1,...,z, € ['(U, Ox), such that

Ueely = D x|y, - dui.
i=1

Dually, we have derivations 01, ...,0, € Dery (I‘(U, ﬁx)), such that

yX‘U g@ﬁX‘U'ai'
i=1

This says that df = 01(f) - dz1 + -+ + On(f) - dz,, for every f € T'(U, Ox), and so
the derivation 9; plays the role of the partial derivative operator 9/0z;. One can
choose the functions z1,...,z, € I'(U, Ox) in such a way that they generate the
maximal ideal m; C Ox . Keep in mind that the morphism U — A} defined by
the local coordinates is étale, but not usually an embedding (because open sets in
the Zariski topology are too big).

The sheaf of differential operators. Let X be a nonsingular algebraic variety.
Our goal is to define the sheaf of differential operators Zx, which is a global ana-
logue of the Weyl algebra A,, (k). This will be a quasi-coherent sheaf of &x-modules
Px, together with an increasing filtration FeZx by coherent €x-modules, where
F;Zx consists of differential operators of order < j.

We start by considering the affine case. So let U C X be an affine open subset,
and set A = I'(U, Ox), which is a finitely generated k-algebra. We are going to
define an A-module D(A) C Endg(A), whose elements are the algebraic differential
operators of finite order on A. It will satisfy

D(4) = G FyD(A),
§=0

where F;D(A) is the submodule of operators of order < j. The idea is that operators
of order 0 should be multiplication by elements in A, and that if P € F;D(A) and
@ € F;D(A), then their commutator [P,Q] = Po Q — Q o P € Endi(A) should
belong to F;y;_1D(A). This is consistent with what happens for the Weyl algebra.

For an element f € A, we also use the symbol f € Endg(A) to denote the
operator of multiplication by f. Observe that P € Endj(A) is multiplication by
the element P(1) € A if and only if P is A-linear if and only if [P, f] = 0 for every
f € A. We can therefore define

FyD(A) = { P € Endy(A) | [P, f] =0 for every f € A} = A
We then define F;D(A) recursively by saying that
F;D(A) = { P € Endy(A) | [P, f] € Fj_1D(A) for every f € A}.
This construction of differential operators is due to Grothendieck.
Ezample 9.1. Let us work out the relationship between F; D(A) and Dery(A). Every
derivation § € Dery(A) is also a differential operator of order 1, because
[0, f1(9) = 0(fg) — fo(9) =6(f) -9
for every f,g € A, which shows that [d, f] = §(f) € FyD(A). Conversely, suppose
that we have some P € F; D(A). By definition, for every f € A, there exists some
pr € A such that [P, f] = py. Concretely, this means that
P(fg)—fP(g)=pr-g

for every f,g € A. Taking g = 1, we get py = P(f) — fP(1), and so

P(fg) — fP(9) —gP(f) + fgP(1) = 0.
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It is then easy to check that P — P(1) is a derivation. The conclusion is that
FiD(A) 2 A® Derg(A)
with P € Fy D(A) corresponding to the pair (P(1), P — P(1)).

It is easy to see that each F;D(A) is a finitely generated A-module, and that
composition in Endy(A) has the following effect: if P € F;D(A) and Q € F;D(A),
then Po @ € Fi;;D(A) and [P,Q] € F;1j_1D(A). With some more work, one can
prove the following result.

Proposition 9.2. Let A be a finitely generated k-algebra. If A is nonsingular of
dimension n, then the following is true:
(a) As an A-algebra, D(A) C Endg(A) is generated by Derp(A), subject to the
relations [, f] = 6(f) for every § € Dery(A) and every f € A.
(b) One has F;D(A)/F;j_D(A) = Sym’ Der(A) for j > 0.
(c) One has an isomorphism of graded A-algebras

gt D(A) = @ F;D(A)/F;_1D(A) = Sym Dery,(A)
j=0

between the associated graded algebra of D(A) and the symmetric algebra
on Dery,(A).

Here, for any A-module M, the j-th symmetric power Sym’ M is the A-module
obtained by quotienting M ®4 --- ® 4 M by the submodule generated by elements
of the form m; ® ---m; — mg1) @ -+~ Mmy(y), for all permutations o € S;. The
symmetric algebra on M is the graded A-algebra

Sym M = @Symj M.
j=0
It has the following universal property: if B is any A-algebra, then every morphism
of A-modules M — B extends uniquely to a morphism of A-algebras Sym M — B.

For example, one has Sym A®" = Alxq, ..., z,].
Let us give a concrete description of differential operators in local coordinates.
Let U C X be an affine open, with local coordinates x1,...,%,, and set A =

I'(U,0x). The A-module Dery(A) is free of rank n, generated by the derivations
O1,...,0n, and so D(A) is freely generated over A by products of these. In other
words, every P € F;D(A) can be written uniquely in the form

P= 3" fad",
lal<j

where 9% = 91" --- 99" and where f, € A. The only difference with the case of
the Weyl algebra is that the coefficients now belong to the ring A, instead of to the
polynomial ring.

Ezample 9.3. In the case A = k[xy,...,x,], we have D(A) = A,(k), and the
filtration FyD(A) agrees with the order filtration.

Now we would like to say that Zx is the unique sheaf of &x-modules with the
property that T'(U, Zx) = D(F(U7 ﬁx)) for every affine open U C X. For this to
work, one needs the following compatibility result.

Proposition 9.4. Let A be a finitely generated k-algebra that is nonsingular of
dimension n. For nonzero f € A, set Ay = A[f~!]. Then one has isomorphisms

D(Af)%”Af XA D(A) and FjD(Af)%"Af XA F}D(A)
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The content of this is that every differential operator on A extends, after mul-
tiplication by a sufficiently large power of f, to a differential operator on A. (The
analogous result for Kihler differentials is that Q}M = Ar®a QL /i you can find

this in Hartshorne, who quotes Matsumura for the proof.)

Note. Unless X is affine, I'(X, Zx) does not embed into the k-linear endomor-
phisms of I'(X, Ox ). For example, we shall see below that there are many algebraic
differential operators on P}, but since P} is proper, every regular function on P} is
constant. This is why differential operators are defined locally.

The proposition implies that Zx is a quasi-coherent sheaf of &'x-modules, and
that each F;9x is coherent. Indeed, recall that a sheaf of &x-modules .# is called
quasi-coherent if, for every affine open subset U C X, the restriction of .# to U
is the sheaf of &x-modules associated with the T'(U, &x)-module T'(U, #). On an
affine scheme Spec A, a necessary and sufficient condition for .%# to be quasi-coherent
is that

L(D(f),F) = Af @4 T'(Spec A, .F)
for every f € A, where D(f) C Spec A denotes the principal affine open defined by
f- When X is noetherian, which is the case for schemes of finite type over a field, #
is coherent if each I'(U, %) is finitely generated over I'(U, Ox). So the proposition
says exactly that Zx is quasi-coherent and that each F;Zx is coherent.

The isomorphisms in Proposition 9.2 globalize as follows. One has FyZx = Oy,
and for every j > 0, one has

grf @X = Fj@)(/Fj;l@X = Symj yx,
where Jx is the tangent sheaf. One also has an isomorphism of graded &'x-algebras
gr’ 7x =~ Sym Ix,

and so the associated graded algebra of Zx is again commutative, as in the case
of the Weyl algebra. Since X is nonsingular, J is locally free of rank n, and the
symmetric algebra on Jx can be interpreted as the sheaf of algebraic functions on
the cotangent bundle. Let us denote by p: T*X — X the cotangent bundle of X,
with its natural projection to X. This is again a nonsingular algebraic variety, now
of dimension 2n, locally isomorphic to the product of X and affine space A}. By the
correspondence between vector bundles and locally free sheaves (from Hartshorne’s
book), one has an isomorphism

T*X 2 V(Jx) = Specy Sym Jx,

and therefore p,Op+x = Sym Iy as Ox-algebras. This is why people sometimes
refer to Zx as a “noncommutative deformation” of the cotangent bundle.

Ezxample 9.5. Let us consider the example X = P}. The k-vector space I'(X, Zx)
of global differential operators on projective space is infinite-dimensional. There
are several ways to see this. One way is by diagram chasing. We have FyZx = Oy,
and therefore T'(X, FyZx) = k. For each j > 1, we have a short exact sequence

0— Fj_19x — F;9x — Sym? Tx — 0.
One can show by induction that H' (X, F;Zx) = 0 for j > 0, and so
HY(X,F;9x)/H°(X, F;_19x) = H°(X, Sym’ Jx).
These vector spaces can then be computed using the Euler sequence
0— Ox — Ox(1)® Y & 7 0.

For example, dim H(X, 7x) = (n+1)? — 1, and so dim H*(X, F} Zx) = (n + 1)%.
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Another way is to use the standard open covering X = UyUU; U---UU,. Since
each U; is isomorphic to A}, one has I'(U;, Zx) = A, (k), and so an element of
I'(X, Zx) can be described by (n+1) elements of the Weyl algebra that are related
to each other by the coordinate transformations among the U;. (See the exercises.)

The third way is to use the presentation of X as a quotient of AZ“ minus the
origin, by identifying points of P} with lines in AZ'H. Recall how this works in the
case of the Euler sequence. Once n > 1, a vector field on AZ“ minus the origin is
the same thing as a vector field on AZ‘H, hence of the form

foOo + f101 + - 4 fnOn,

for polynomials fo, ..., fn € klzo,...,2,]. Such a vector field descends to X if and
only if it is homogeneous of degree 0, where degz; = 1 and degd; = —1. At the
same time, the Euler vector field

xoao + $181 R xnan
is tangent to the lines through the origin, and therefore descends to the zero vector
field. This shows that I'(X, Zx) is generated by the (n + 1)? vector fields z;0;,
subject to the single relation zgdy + -+ + £,0, = 0. In the same way, one can
show that T'(X, Zx) is isomorphic to the space of differential operators on AZ“

that are homogeneous of degree 0, modulo the ideal generated by the Euler vector
field. Concretely, an element P € I'(X, F;Zx) can be written in the form

P= > cowfo-afrof -0
la]=181<j
and this expression is unique modulo multiples of xq9y +- - - +x,,0,,. The restriction
of P to the standard affine open Uj is obtained by setting o = 1 and using the
relation dg = — (101 + - -+ + x,0y).

Algebraic Zx-modules. Let me end with the following definition. An algebraic
2-module on a nonsingular algebraic variety X is a quasi-coherent sheaf of Ox-
modules M, together with a (left or right) action by the sheaf of differential opera-
tors Px. In other words, for every affine open subset U C X, with A =T(U, Ox),
we get an A-module M, together with a (left or right) action by the module of
differential operators D(A).

Exercises.
Ezercise 9.1. Show that one has Derg(Ay) = A; ® 4 Dery(A) for every f € A.
Ezercise 9.2. For X =P}, compute dim I'(X, F;Zx) as a function of j > 0.

Ezercise 9.3. Consider the example X = Pi. If we use the symbol z; for the
coordinate on Uy = Ai, and x7 for the coordinate on U; = A}e, then I'(Uy, Zx) is
the Weyl algebra on z and dp, and T'(Uy, Zx) is the Weyl algebra on x; and 0;.
Using the coordinate change z; = ! decide when two differential operators

P= Zal-}jxéag and Q= mexia{
2] 2]
have the same restriction to Uy N U;. Use this to describe the space I'(X, Zx) of
global differential operators on Pj..



