Lecture 9: March 4

Local coordinates on algebraic varieties. Let X be an algebraic variety over a field k, with structure sheaf \mathscr{O}_{X}. More precisely, X is a scheme of finite type over k, meaning that for every affine open subset $U \subseteq X$, the ring of functions $\Gamma\left(U, \mathscr{O}_{X}\right)$ is a finitely generated k-algebra, or in other words, a quotient of a polynomial ring. We say that X is nonsingular of dimension n if, at each closed point $x \in X$, the stalk

$$
\mathscr{O}_{X, x}=\lim _{U \ni x} \Gamma\left(U, \mathscr{O}_{X}\right)
$$

is a regular local ring of dimension n; in other words, if $\mathfrak{m}_{x} \subseteq \mathscr{O}_{X, x}$ denotes the maximal ideal, then

$$
\operatorname{dim}_{\mathscr{O}_{X, x} / \mathfrak{m}_{x}} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}=n=\operatorname{dim} \mathscr{O}_{X, x}
$$

When the field k is perfect (which is always the case in characteristic zero), an equivalent condition is that the sheaf of Kähler differentials $\Omega_{X / k}^{1}$ is locally free of rank n.

Since we are going to need this in a moment, let me briefly review derivations and Kähler differentials. Let A be a finitely generated k-algebra. A derivation from A into an A-module M is a k-linear mapping $D: A \rightarrow M$ such that $\delta(f g)=$ $f \delta(g)+g \delta(f)$ for every $f, g \in A$. We denote by $\operatorname{Der}_{k}(A, M)$ the set of all such derivations; this is an A-module in the obvious way. In the special case $M=A$, we use the notation $\operatorname{Der}_{k}(A)$ for the derivations from A to itself. In view of the formula $\delta(f g)=f \delta(g)+g \delta(f)$, such a derivation is the algebraic analogue of a vector field, acting on the set of functions in A. We have $\operatorname{Der}_{k}(A) \subseteq \operatorname{End}_{k}(A)$, and one can check that if $\delta_{1}, \delta_{2} \in \operatorname{Der}_{k}(A)$, then their commutator

$$
\left[\delta_{1}, \delta_{2}\right]=\delta_{1} \circ \delta_{2}-\delta_{2} \circ \delta_{1} \in \operatorname{End}_{k}(A)
$$

is again a derivation. It is the analogue of the Lie bracket on complex manifolds.
The module of Kähler differentials $\Omega_{A / k}^{1}$ represents the functor $M \mapsto \operatorname{Der}_{k}(A, M)$, in the sense that one has a functorial isomorphism

$$
\operatorname{Der}_{k}(A, M) \cong \operatorname{Hom}_{A}\left(\Omega_{A / k}^{1}, M\right)
$$

In other words, $\Omega_{A / k}^{1}$ is an A-module, together with a derivation $d: A \rightarrow \Omega_{A / k}^{1}$, such that every derivation $\delta \in \operatorname{Der}_{k}(A, M)$ factors uniquely as $\delta=\tilde{\delta} \circ d$ for a unique A-linear map $\tilde{\delta}: \Omega_{A / k}^{1} \rightarrow M$. Concretely, $\Omega_{A / k}^{1}$ can be constructed by taking the free A-module on the set of generators $d f$, for $f \in A$, and imposing the relations $d(f g)=f d g+g d f$ and $d(f+g)=d f+d g$ for every $f, g \in A$, and $d f=0$ for every $f \in k$. By construction, one has

$$
\operatorname{Der}_{k}(A) \cong \operatorname{Hom}_{A}\left(\Omega_{A / k}^{1}, A\right)
$$

which makes the module of Kähler differentials dual to the module of derivations.
Globally, $\Omega_{X / k}^{1}$ is a coherent sheaf of \mathscr{O}_{X}-modules, such that for every affine open subset $U \subseteq X$, one has $\Gamma\left(U, \Omega_{X / k}^{1}\right)=\Omega_{A / k}^{1}$, where $A=\Gamma\left(U, \mathscr{O}_{X}\right)$. There is again a universal derivation $d: \mathscr{O}_{X} \rightarrow \Omega_{X / k}^{1}$. Think of $\Omega_{X / k}^{1}$ as an algebraic analogue of the sheaf of holomorphic one-forms on a complex manifold. The tangent sheaf

$$
\mathscr{T}_{X}=\operatorname{Hom}_{\mathscr{O}_{X}}\left(\Omega_{X / k}^{1}, \mathscr{O}_{X}\right)
$$

is defined as the dual of the sheaf of Kähler differentials; on affines, one has $\Gamma\left(U, \mathscr{T}_{X}\right)=\operatorname{Der}_{k}(A)$, using the notation from above. This is an algebraic analogue of the sheaf of holomorphic tangent vector fields on a complex manifold.

Now suppose that X is nonsingular of dimension n, or equivalently, that $\Omega_{X / k}^{1}$ is locally free of rank n. At every closed point $x \in X$, one can choose local coordinates
in the following way: there is an affine open neighborhood U of x, together with n regular functions $x_{1}, \ldots, x_{n} \in \Gamma\left(U, \mathscr{O}_{X}\right)$, such that

$$
\left.\left.\Omega_{X / k}^{1}\right|_{U} \cong \bigoplus_{i=1}^{n} \mathscr{O}_{X}\right|_{U} \cdot d x_{i}
$$

Dually, we have derivations $\partial_{1}, \ldots, \partial_{n} \in \operatorname{Der}_{k}\left(\Gamma\left(U, \mathscr{O}_{X}\right)\right)$, such that

$$
\left.\left.\mathscr{T}_{X}\right|_{U} \cong \bigoplus_{i=1}^{n} \mathscr{O}_{X}\right|_{U} \cdot \partial_{i}
$$

This says that $d f=\partial_{1}(f) \cdot d x_{1}+\cdots+\partial_{n}(f) \cdot d x_{n}$ for every $f \in \Gamma\left(U, \mathscr{O}_{X}\right)$, and so the derivation ∂_{i} plays the role of the partial derivative operator $\partial / \partial x_{i}$. One can choose the functions $x_{1}, \ldots, x_{n} \in \Gamma\left(U, \mathscr{O}_{X}\right)$ in such a way that they generate the maximal ideal $\mathfrak{m}_{x} \subseteq \mathscr{O}_{X, x}$. Keep in mind that the morphism $U \rightarrow \mathbb{A}_{k}^{n}$ defined by the local coordinates is étale, but not usually an embedding (because open sets in the Zariski topology are too big).

The sheaf of differential operators. Let X be a nonsingular algebraic variety. Our goal is to define the sheaf of differential operators \mathscr{D}_{X}, which is a global analogue of the Weyl algebra $A_{n}(k)$. This will be a quasi-coherent sheaf of \mathscr{O}_{X}-modules \mathscr{D}_{X}, together with an increasing filtration $F_{\bullet} \mathscr{D}_{X}$ by coherent \mathscr{O}_{X}-modules, where $F_{j} \mathscr{D}_{X}$ consists of differential operators of order $\leq j$.

We start by considering the affine case. So let $U \subseteq X$ be an affine open subset, and set $A=\Gamma\left(U, \mathscr{O}_{X}\right)$, which is a finitely generated k-algebra. We are going to define an A-module $D(A) \subseteq \operatorname{End}_{k}(A)$, whose elements are the algebraic differential operators of finite order on A. It will satisfy

$$
D(A)=\bigcup_{j=0}^{\infty} F_{j} D(A)
$$

where $F_{j} D(A)$ is the submodule of operators of order $\leq j$. The idea is that operators of order 0 should be multiplication by elements in A, and that if $P \in F_{i} D(A)$ and $Q \in F_{j} D(A)$, then their commutator $[P, Q]=P \circ Q-Q \circ P \in \operatorname{End}_{k}(A)$ should belong to $F_{i+j-1} D(A)$. This is consistent with what happens for the Weyl algebra.

For an element $f \in A$, we also use the symbol $f \in \operatorname{End}_{k}(A)$ to denote the operator of multiplication by f. Observe that $P \in \operatorname{End}_{k}(A)$ is multiplication by the element $P(1) \in A$ if and only if P is A-linear if and only if $[P, f]=0$ for every $f \in A$. We can therefore define

$$
F_{0} D(A)=\left\{P \in \operatorname{End}_{k}(A) \mid[P, f]=0 \text { for every } f \in A\right\} \cong A
$$

We then define $F_{j} D(A)$ recursively by saying that

$$
F_{j} D(A)=\left\{P \in \operatorname{End}_{k}(A) \mid[P, f] \in F_{j-1} D(A) \text { for every } f \in A\right\}
$$

This construction of differential operators is due to Grothendieck.
Example 9.1. Let us work out the relationship between $F_{1} D(A)$ and $\operatorname{Der}_{k}(A)$. Every derivation $\delta \in \operatorname{Der}_{k}(A)$ is also a differential operator of order 1 , because

$$
[\delta, f](g)=\delta(f g)-f \delta(g)=\delta(f) \cdot g
$$

for every $f, g \in A$, which shows that $[\delta, f]=\delta(f) \in F_{0} D(A)$. Conversely, suppose that we have some $P \in F_{1} D(A)$. By definition, for every $f \in A$, there exists some $p_{f} \in A$ such that $[P, f]=p_{f}$. Concretely, this means that

$$
P(f g)-f P(g)=p_{f} \cdot g
$$

for every $f, g \in A$. Taking $g=1$, we get $p_{f}=P(f)-f P(1)$, and so

$$
P(f g)-f P(g)-g P(f)+f g P(1)=0 .
$$

It is then easy to check that $P-P(1)$ is a derivation. The conclusion is that

$$
F_{1} D(A) \cong A \oplus \operatorname{Der}_{k}(A)
$$

with $P \in F_{1} D(A)$ corresponding to the pair $(P(1), P-P(1))$.
It is easy to see that each $F_{j} D(A)$ is a finitely generated A-module, and that composition in $\operatorname{End}_{k}(A)$ has the following effect: if $P \in F_{i} D(A)$ and $Q \in F_{j} D(A)$, then $P \circ Q \in F_{i+j} D(A)$ and $[P, Q] \in F_{i+j-1} D(A)$. With some more work, one can prove the following result.
Proposition 9.2. Let A be a finitely generated k-algebra. If A is nonsingular of dimension n, then the following is true:
(a) As an A-algebra, $D(A) \subseteq \operatorname{End}_{k}(A)$ is generated by $\operatorname{Der}_{k}(A)$, subject to the relations $[\delta, f]=\delta(f)$ for every $\delta \in \operatorname{Der}_{k}(A)$ and every $f \in A$.
(b) One has $F_{j} D(A) / F_{j-1} D(A) \cong \operatorname{Sym}^{j} \operatorname{Der}_{k}(A)$ for $j \geq 0$.
(c) One has an isomorphism of graded A-algebras

$$
\operatorname{gr}^{F} D(A)=\bigoplus_{j=0}^{\infty} F_{j} D(A) / F_{j-1} D(A) \cong \operatorname{Sym}_{\operatorname{Der}}^{k}(A)
$$

between the associated graded algebra of $D(A)$ and the symmetric algebra on $\operatorname{Der}_{k}(A)$.

Here, for any A-module M, the j-th symmetric power $\operatorname{Sym}^{j} M$ is the A-module obtained by quotienting $M \otimes_{A} \cdots \otimes_{A} M$ by the submodule generated by elements of the form $m_{1} \otimes \cdots m_{j}-m_{\sigma(1)} \otimes \cdots m_{\sigma(j)}$, for all permutations $\sigma \in S_{j}$. The symmetric algebra on M is the graded A-algebra

$$
\operatorname{Sym} M=\bigoplus_{j=0}^{\infty} \operatorname{Sym}^{j} M
$$

It has the following universal property: if B is any A-algebra, then every morphism of A-modules $M \rightarrow B$ extends uniquely to a morphism of A-algebras Sym $M \rightarrow B$. For example, one has Sym $A^{\oplus r} \cong A\left[x_{1}, \ldots, x_{r}\right]$.

Let us give a concrete description of differential operators in local coordinates. Let $U \subseteq X$ be an affine open, with local coordinates x_{1}, \ldots, x_{n}, and set $A=$ $\Gamma\left(U, \mathscr{O}_{X}\right)$. The A-module $\operatorname{Der}_{k}(A)$ is free of rank n, generated by the derivations $\partial_{1}, \ldots, \partial_{n}$, and so $D(A)$ is freely generated over A by products of these. In other words, every $P \in F_{j} D(A)$ can be written uniquely in the form

$$
P=\sum_{|\alpha| \leq j} f_{\alpha} \partial^{\alpha}
$$

where $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ and where $f_{\alpha} \in A$. The only difference with the case of the Weyl algebra is that the coefficients now belong to the ring A, instead of to the polynomial ring.
Example 9.3. In the case $A=k\left[x_{1}, \ldots, x_{n}\right]$, we have $D(A)=A_{n}(k)$, and the filtration $F_{\bullet} D(A)$ agrees with the order filtration.

Now we would like to say that \mathscr{D}_{X} is the unique sheaf of \mathscr{O}_{X}-modules with the property that $\Gamma\left(U, \mathscr{D}_{X}\right)=D\left(\Gamma\left(U, \mathscr{O}_{X}\right)\right)$ for every affine open $U \subseteq X$. For this to work, one needs the following compatibility result.

Proposition 9.4. Let A be a finitely generated k-algebra that is nonsingular of dimension n. For nonzero $f \in A$, set $A_{f}=A\left[f^{-1}\right]$. Then one has isomorphisms

$$
D\left(A_{f}\right) \cong A_{f} \otimes_{A} D(A) \quad \text { and } \quad F_{j} D\left(A_{f}\right) \cong A_{f} \otimes_{A} F_{j} D(A)
$$

The content of this is that every differential operator on A_{f} extends, after multiplication by a sufficiently large power of f, to a differential operator on A. (The analogous result for Kähler differentials is that $\Omega_{A_{f} / k}^{1} \cong A_{f} \otimes_{A} \Omega_{A / k}^{1}$; you can find this in Hartshorne, who quotes Matsumura for the proof.)
Note. Unless X is affine, $\Gamma\left(X, \mathscr{D}_{X}\right)$ does not embed into the k-linear endomorphisms of $\Gamma\left(X, \mathscr{O}_{X}\right)$. For example, we shall see below that there are many algebraic differential operators on \mathbb{P}_{k}^{n}, but since \mathbb{P}_{k}^{n} is proper, every regular function on \mathbb{P}_{k}^{n} is constant. This is why differential operators are defined locally.

The proposition implies that \mathscr{D}_{X} is a quasi-coherent sheaf of \mathscr{O}_{X}-modules, and that each $F_{j} \mathscr{D}_{X}$ is coherent. Indeed, recall that a sheaf of \mathscr{O}_{X}-modules \mathscr{F} is called quasi-coherent if, for every affine open subset $U \subseteq X$, the restriction of \mathscr{F} to U is the sheaf of \mathscr{O}_{X}-modules associated with the $\Gamma\left(U, \mathscr{O}_{X}\right)$-module $\Gamma(U, \mathscr{F})$. On an affine scheme $\operatorname{Spec} A$, a necessary and sufficient condition for \mathscr{F} to be quasi-coherent is that

$$
\Gamma(D(f), \mathscr{F}) \cong A_{f} \otimes_{A} \Gamma(\operatorname{Spec} A, \mathscr{F})
$$

for every $f \in A$, where $D(f) \subseteq \operatorname{Spec} A$ denotes the principal affine open defined by f. When X is noetherian, which is the case for schemes of finite type over a field, \mathscr{F} is coherent if each $\Gamma(U, \mathscr{F})$ is finitely generated over $\Gamma\left(U, \mathscr{O}_{X}\right)$. So the proposition says exactly that \mathscr{D}_{X} is quasi-coherent and that each $F_{j} \mathscr{D}_{X}$ is coherent.

The isomorphisms in Proposition 9.2 globalize as follows. One has $F_{0} \mathscr{D}_{X}=\mathscr{O}_{X}$, and for every $j \geq 0$, one has

$$
\operatorname{gr}_{j}^{F} \mathscr{D}_{X}=F_{j} \mathscr{D}_{X} / F_{j-1} \mathscr{D}_{X} \cong \operatorname{Sym}^{j} \mathscr{T}_{X},
$$

where \mathscr{T}_{X} is the tangent sheaf. One also has an isomorphism of graded \mathscr{O}_{X}-algebras

$$
\operatorname{gr}^{F} \mathscr{D}_{X} \cong \operatorname{Sym} \mathscr{T}_{X}
$$

and so the associated graded algebra of \mathscr{D}_{X} is again commutative, as in the case of the Weyl algebra. Since X is nonsingular, \mathscr{T}_{X} is locally free of rank n, and the symmetric algebra on \mathscr{T}_{X} can be interpreted as the sheaf of algebraic functions on the cotangent bundle. Let us denote by $p: T^{*} X \rightarrow X$ the cotangent bundle of X, with its natural projection to X. This is again a nonsingular algebraic variety, now of dimension $2 n$, locally isomorphic to the product of X and affine space \mathbb{A}_{k}^{n}. By the correspondence between vector bundles and locally free sheaves (from Hartshorne's book), one has an isomorphism

$$
T^{*} X \cong \mathbb{V}\left(\mathscr{T}_{X}\right)=\mathbf{S p e c}_{X} \operatorname{Sym} \mathscr{T}_{X}
$$

and therefore $p_{*} \mathscr{O}_{T^{*} X} \cong \operatorname{Sym} \mathscr{T}_{X}$ as \mathscr{O}_{X}-algebras. This is why people sometimes refer to \mathscr{D}_{X} as a "noncommutative deformation" of the cotangent bundle.

Example 9.5. Let us consider the example $X=\mathbb{P}_{k}^{n}$. The k-vector space $\Gamma\left(X, \mathscr{D}_{X}\right)$ of global differential operators on projective space is infinite-dimensional. There are several ways to see this. One way is by diagram chasing. We have $F_{0} \mathscr{D}_{X}=\mathscr{O}_{X}$, and therefore $\Gamma\left(X, F_{0} \mathscr{D}_{X}\right)=k$. For each $j \geq 1$, we have a short exact sequence

$$
0 \rightarrow F_{j-1} \mathscr{D}_{X} \rightarrow F_{j} \mathscr{D}_{X} \rightarrow \operatorname{Sym}^{j} \mathscr{T}_{X} \rightarrow 0
$$

One can show by induction that $H^{1}\left(X, F_{j} \mathscr{D}_{X}\right)=0$ for $j \geq 0$, and so

$$
H^{0}\left(X, F_{j} \mathscr{D}_{X}\right) / H^{0}\left(X, F_{j-1} \mathscr{D}_{X}\right) \cong H^{0}\left(X, \operatorname{Sym}^{j} \mathscr{T}_{X}\right)
$$

These vector spaces can then be computed using the Euler sequence

$$
0 \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{O}_{X}(1)^{\oplus(n+1)} \rightarrow \mathscr{T}_{X} \rightarrow 0
$$

For example, $\operatorname{dim} H^{0}\left(X, \mathscr{T}_{X}\right)=(n+1)^{2}-1$, and so $\operatorname{dim} H^{0}\left(X, F_{1} \mathscr{D}_{X}\right)=(n+1)^{2}$.

Another way is to use the standard open covering $X=U_{0} \cup U_{1} \cup \cdots \cup U_{n}$. Since each U_{i} is isomorphic to \mathbb{A}_{k}^{n}, one has $\Gamma\left(U_{i}, \mathscr{D}_{X}\right) \cong A_{n}(k)$, and so an element of $\Gamma\left(X, \mathscr{D}_{X}\right)$ can be described by $(n+1)$ elements of the Weyl algebra that are related to each other by the coordinate transformations among the U_{i}. (See the exercises.)

The third way is to use the presentation of X as a quotient of \mathbb{A}_{k}^{n+1} minus the origin, by identifying points of \mathbb{P}_{k}^{n} with lines in \mathbb{A}_{k}^{n+1}. Recall how this works in the case of the Euler sequence. Once $n \geq 1$, a vector field on \mathbb{A}_{k}^{n+1} minus the origin is the same thing as a vector field on \mathbb{A}_{k}^{n+1}, hence of the form

$$
f_{0} \partial_{0}+f_{1} \partial_{1}+\cdots+f_{n} \partial_{n}
$$

for polynomials $f_{0}, \ldots, f_{n} \in k\left[x_{0}, \ldots, x_{n}\right]$. Such a vector field descends to X if and only if it is homogeneous of degree 0 , where $\operatorname{deg} x_{j}=1$ and $\operatorname{deg} \partial_{j}=-1$. At the same time, the Euler vector field

$$
x_{0} \partial_{0}+x_{1} \partial_{1}+\cdots+x_{n} \partial_{n}
$$

is tangent to the lines through the origin, and therefore descends to the zero vector field. This shows that $\Gamma\left(X, \mathscr{T}_{X}\right)$ is generated by the $(n+1)^{2}$ vector fields $x_{i} \partial_{j}$, subject to the single relation $x_{0} \partial_{0}+\cdots+x_{n} \partial_{n}=0$. In the same way, one can show that $\Gamma\left(X, \mathscr{D}_{X}\right)$ is isomorphic to the space of differential operators on \mathbb{A}_{k}^{n+1} that are homogeneous of degree 0 , modulo the ideal generated by the Euler vector field. Concretely, an element $P \in \Gamma\left(X, F_{j} \mathscr{D}_{X}\right)$ can be written in the form

$$
P=\sum_{|\alpha|=|\beta| \leq j} c_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n}^{\alpha_{n}} \partial_{0}^{\beta_{0}} \cdots \partial_{n}^{\beta_{n}}
$$

and this expression is unique modulo multiples of $x_{0} \partial_{0}+\cdots+x_{n} \partial_{n}$. The restriction of P to the standard affine open U_{0} is obtained by setting $x_{0}=1$ and using the relation $\partial_{0}=-\left(x_{1} \partial_{1}+\cdots+x_{n} \partial_{n}\right)$.

Algebraic \mathscr{D}_{X}-modules. Let me end with the following definition. An algebraic \mathscr{D}-module on a nonsingular algebraic variety X is a quasi-coherent sheaf of $\mathscr{O}_{X^{-}}$ modules \mathcal{M}, together with a (left or right) action by the sheaf of differential operators \mathscr{D}_{X}. In other words, for every affine open subset $U \subseteq X$, with $A=\Gamma\left(U, \mathscr{O}_{X}\right)$, we get an A-module M, together with a (left or right) action by the module of differential operators $D(A)$.

Exercises.

Exercise 9.1. Show that one has $\operatorname{Der}_{k}\left(A_{f}\right) \cong A_{f} \otimes_{A} \operatorname{Der}_{k}(A)$ for every $f \in A$.
Exercise 9.2. For $X=\mathbb{P}_{k}^{n}$, compute $\operatorname{dim}_{k} \Gamma\left(X, F_{j} \mathscr{D}_{X}\right)$ as a function of $j \geq 0$.
Exercise 9.3. Consider the example $X=\mathbb{P}_{k}^{1}$. If we use the symbol x_{0} for the coordinate on $U_{0}=\mathbb{A}_{k}^{1}$, and x_{1} for the coordinate on $U_{1}=\mathbb{A}_{k}^{1}$, then $\Gamma\left(U_{0}, \mathscr{D}_{X}\right)$ is the Weyl algebra on x_{0} and ∂_{0}, and $\Gamma\left(U_{1}, \mathscr{D}_{X}\right)$ is the Weyl algebra on x_{1} and ∂_{1}. Using the coordinate change $x_{1}=x_{0}^{-1}$, decide when two differential operators

$$
P=\sum_{i, j} a_{i, j} x_{0}^{i} \partial_{0}^{j} \quad \text { and } \quad Q=\sum_{i, j} b_{i, j} x_{1}^{i} \partial_{1}^{j}
$$

have the same restriction to $U_{0} \cap U_{1}$. Use this to describe the space $\Gamma\left(X, \mathscr{D}_{X}\right)$ of global differential operators on \mathbb{P}_{k}^{1}.

