
Homework 9 Solutions

§14.3
6. The boundary circle is given by

(x− 0)2 + (y − 2)2 = 22

(r cos θ)2 + (r sin θ − 2)2 = 4

Simplifying the last equation gives

r = 4 sin θ

So the region is R = {(r, θ) : 0 ≤ r ≤ 4 sin θ, 0 ≤ θ ≤ π}

10. The region lies in the first quadrant as shown below.

∫ π/2

0

∫ sin θ

0

r2drdθ =

∫ π/2

0

(
r3

3

∣∣∣∣sin θ
0

)dθ =
1

3

∫ π/2

0

sin3 θdθ

=
1

3

∫ π/2

0

(1− cos2 θ) sin θdθ

=
1

3
[− cos θ +

cos3 θ

3
]

∣∣∣∣π/2
0

=
2

9

26. The region we integrate over is the region bounded by the co-
ordinate axes and the circle with radius

√
6 and center 0. We can

convert the integral into polar coordinates as follows.
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∫ √6

0

∫ √6−x2

0

sin
√
x2 + y2dydx =

∫ π/2

0

∫ √6

0

(sin r)rdrdθ

Now integrating by parts, we get∫ π/2

0

∫ √6

0

(sin r)rdrdθ =
π

2
[(−r cos r)

∣∣∣∣
√

6

0

+

∫ √6

0

cos rdr]

=
π

2
(sin
√

6−
√

6 cos
√

6)

36. We want to find the volume of the solid bounded by the graphs
of the following equations: z = ln(x2 + y2), z = 0, x2 + y2 ≥ 1,
x2 + y2 ≤ 4. Denote the volume of the solid by V . Then,

V =

∫ 2π

0

∫ 2

1

(ln r2)rdrdθ = 2π
1

2
[r2 ln(r2)− r2]

∣∣∣∣2
1

= π[4 ln 4− 4 + 1]

= π(8 ln 2− 3)

44. The shaded region is {(r, θ) : 0 ≤ r ≤ 2 + sin θ, 0 ≤ θ ≤ 2π} So
it has area

A =

∫ 2π

0

∫ 2+sin θ

0

rdrdθ =
1

2

∫ 2π

0

r2

∣∣∣∣2+sin θ

0

dθ =
1

2

∫ 2π

0

(2 + sin θ)2dθ

=
1

2

∫ 2π

0

(4 + 4 sin θ + sin2 θ)dθ

= 4π + 2[− cos θ]

∣∣∣∣2π
0

+
1

2

∫ 2π

0

1− cos 2θ

2
dθ =

9π

2
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§14.4
10. The region R is the triangle with vertices (0, 0), (a/2, a), (a, 0).
To find the center of mass of the lamina corresponding to R, we
need to find the mass m, the moments of mass with respect to the
x and y−axes, Mx and My.

(a)ρ = k
The mass m = k ·Area(R) = ka2/2 is evident. The moment of mass
with respect to the x-axis is

Mx =

∫∫
R

kydA = k

∫ a

0

∫ a−y/2

y/2

ydxdy = k

∫ a

0

y(a− y)dy =
ka3

6

Calculations for My is similar.

My =

∫∫
R

kydA = k

∫ a

0

∫ a−y/2

y/2

xdxdy = k

∫ a

0

x2

2

∣∣∣∣a−y/2
y/2

dy

=
k

2

∫ a

0

(a2 − ay)dy =
ka3

4

So the center of mass is

(x̄, ȳ) = (
My

m
,
Mx

m
) = (

ka3/4

ka2/2
,
ka3/6

ka2/2
) = (

a

2
,
a

3
)

(b)ρ = kxy

m =

∫ a

0

∫ a−y/2

y/2

kxydxdy =
k

2

∫ a

0

y(a2 − ya)dy =
k

2
(
a2y2

2
− y3a

3
)

∣∣∣∣a
0

=
ka4

12
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Mx =

∫ a

0

∫ a−y/2

y/2

y · kxydxdy =
k

2

∫ a

0

y2(a2 − ya) =
k

2
(a2y

3

3

∣∣∣∣a
0

− ay
4

4

∣∣∣∣a
0

)

=
ka5

24

My =

∫ a

0

∫ a−y/2

y/2

x · kxydxdy = k

∫ a

0

y
x3

3

∣∣∣∣a−y/2
y/2

dy

=
k

3

∫ a

0

y(a3 − 3a2y

2
+

3ay2

4
− y3

4
)dy

=
11ka5

240

So the center of mass is

( ¯x, ȳ) = (
My

m
,
Mx

m
) = (

11a

20
,
a

2
)

16. The region is as below. We wish to find the center of mass with
density ρ = k.

As before, we first calculate the mass.

m = k

∫∫
R

dA = 2k

∫ 1

0

1

1 + x2
dx = 2k arctanx

∣∣∣∣1
0

=
kπ

2

Mx = k

∫∫
R

dA =

∫ 1

−1

∫ 1/(1+x2)

0

ydydx =
1

2

∫ 1

−1

(
1

1 + x2
)2dx =

∫ 1

0

(
1

1 + x2
)2dx

Let x = tan θ, so dx = sec2 θdθ. Then Mx becomes

Mx =

∫ π/4

0

sec2 θ

sec4 θ
dθ =

∫ π/4

0

cos2 θdθ = k(
π

8
+

1

4
)
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My = 0 since the lamina is symmetric with respect to the y-axis
and the density is constant (which can be checked by direct compu-
tation).

( ¯x, ȳ) = (
My

m
,
Mx

m
) = (0,

1

4
+

1

2π
)

24. The region is as shown, with density given to be ρ = k(x2 + y2)

m =

∫ π/2

0

∫ 4

0

kr2rdrdθ =
πk

2

r4

4

∣∣∣∣4
0

= 32πk

Mx =

∫∫
R

y · k(x2 + y2)dxdy =

∫ π/2

0

∫ 4

0

r sin θ · kr3drdθ

= (− cos θ)

∣∣∣∣π/2
0

· kr
5

5

∣∣∣∣4
0

=
k45

5

Note that My = Mx by symmetry. So, the center of mass

(x̄, ȳ) = (
32

5π
,

32

5π
)

34. Assume the lamina has constant density ρ = 1g/cm2. We want
to find the moment of inertia and the radius of gyration with respect
to both axes. First, we look at

Ix =

∫∫
R

y2dA = 4

∫ 1

0

∫ √1−x2/a2

0

y2dydx =
4

3
b3

∫ 1

0

(1− x2

a2
)
3
2

Now we make a change of variable x = a sin θ, then

Ix =
4

3
b3

∫ π/2

0

a cos4 θdθ =
4ab3

3

∫ π/2

0

(
1 + cos 2θ

2
)2dθ =

π

4
ab3

5



Switching the role of a, b and x, y, one sees that

Iy =
π

4
a3b

So,

I0 = Ix + Iy =
1

4
πab(a2 + b2)

The mass m = ρ · Area(R) = πab. The radii of gyrations with
respect to both axes are

¯̄x =

√
Iy
m

=
1

2
a

¯̄y =

√
Ix
m

=
1

2
b

46. The height at which a vertical gate in a dam should be hinged
so that there is no moment causing rotation is given to be

ya = ȳ − Iȳ
hA

Observe that ȳ = 0, h = d + a and A = πa2. From Q34, we also
know that Iȳ = π

4
a4. By the model above, we get

ya = − a2

4(d+ a)

§14.5
6. We will find the surface area of the plane z = f(x, y), where
f(x, y) = 12 + 2x− 3y over the region R = (x, y) : x2 + y2 ≤ 9. The
partial derivatives are

fx = 2, fy = 3

So the surface area is

S =

∫∫
R

√
1 + f 2

x + f 2
ydA =

∫∫
R

√
14dA = 9

√
14π

6



16. Here f(x, y) =
√
a2 − x2 − y2 and R = {(x, y) : x2 + y2 ≤

a2}. As in Q6, we calculate the first partials.

fx = −x(a2 − x2 − y2)−1/2, fy = −y(a2 − x2 − y2)−1/2

So the surface area is

S =

∫ π

0

∫ a

0

a√
a2 − r2

rdrdθ = 2πa2

20. The surface is the portion of the cone z = 2
√
x2 + y2 inside the

cylinder x2 + y2 = 4

S = 4
√

5π

See Q38 of this section.

30. f(x, y) = cos (x2 + y2), R = {(x, y) : x2 + y2 ≤ π/2} The
first partials are

fx = −2 sin (x2 + y2)x, fy = −2 sin (x2 + y2)y

To set up the double integral for the surface area, we switch to polar
coordinates.

S =

∫∫
R

√
1 + f 2

x + f 2
ydA =

∫∫
R

√
1 + 4(x2 + y2) sin (x2 + y2)dA

=

∫ 2π

0

∫ √π/2

0

√
1 + 4r2 sin2 r2rdrdθ

38. This is a general case for Q20. We need to show that the sur-
face area of the cone z = k

√
x2 + y2 over the region R = {(x, y) :

x2 + y2 ≤ r2} is πr2
√
k2 + 1.

fx =
kx√
x2 + y2

, fy =
ky√
x2 + y2

.

The surface area is hence

S =

∫∫
R

√
1 + f 2

x + f 2
ydA =

∫∫
R

√
1 + k2dA = Area(R)

√
1 + k2

= πr2
√
k2 + 1
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