Homework 9 Solutions

§14.3
6. The boundary circle is given by

(x =0+ (y—2)? =27
(rcos)® + (rsinf —2)* =4
Simplifying the last equation gives
r=4sin6

So the region is R = {(r,0) : 0 <r < 4sinf, 0 <0 < 7}

10. The region lies in the first quadrant as shown below.
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26. The region we integrate over is the region bounded by the co-
ordinate axes and the circle with radius v/6 and center 0. We can
convert the integral into polar coordinates as follows.
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Now integrating by parts, we get
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36. We want to find the volume of the solid bounded by the graphs
of the following equations: z = In(z? + ¢?), 2 = 0, 22 +¢y* > 1,
22 + y? < 4. Denote the volume of the solid by V. Then,
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44. The shaded region is {(r,0) : 0 <r < 2+4sinf, 0 <0 < 27} So
it has area
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§14.4

10. The region R is the triangle with vertices (0,0), (a/2,a), (a,0).
To find the center of mass of the lamina corresponding to R, we
need to find the mass m, the moments of mass with respect to the
x and y—axes, M, and M,,.

(a)p =k
The mass m = k- Area(R) = ka?/2 is evident. The moment of mass
with respect to the x-axis is
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Calculations for M, is similar.
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So the center of mass is
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So the center of mass is
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M, M, 1la a
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16. The region is as below. We wish to find the center of mass with
density p = k.

As before, we first calculate the mass.
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Let x = tané, so dz = sec® 0df. Then M, becomes
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M, = 0 since the lamina is symmetric with respect to the y-axis
and the density is constant (which can be checked by direct compu-
tation).
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24. The region is as shown, with density given to be p = k(z?* + y?)
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Note that M, = M, by symmetry. So, the center of mass
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34. Assume the lamina has constant density p = 1g/cm?. We want
to find the moment of inertia and the radius of gyration with respect
to both axes. First, we look at
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Now we make a change of variable x = asin f, then
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Switching the role of a, b and x, y, one sees that
[y = Za?’b
So,
1 2 | 72
Iy=1,+1, = Zwab(a + b%)

The mass m = p - Area(R) = mab. The radii of gyrations with
respect to both axes are
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46. The height at which a vertical gate in a dam should be hinged
so that there is no moment causing rotation is given to be

I
Ya = _m

=d+aand A = 7a®. From Q34, we also

Observe that y = 0, h
4. By the model above, we get
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§14.5

6. We will find the surface area of the plane z = f(z,y), where
f(x,y) = 12+ 22 — 3y over the region R = (z,y) : 22 + y* < 9. The
partial derivatives are

fI:27 fy:3

So the surface area is
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16. Here f(x,y) = /a2 — 22 —y? and R = {(x,y) : 2* + 3> <

a’}. As in Q6, we calculate the first partials.

fo=—x( 2_ 2 y2>—1/2’ fy = —y( 2 _ 2 _ y2>—1/2

So the surface area is

i a a
S:/ / ———rdrdf = 2wa®

20. The surface is the portion of the cone z = 24/x2 + y? inside the
cylinder 22 + 3% = 4

S = 457
See Q38 of this section.
30. f(z,y) = cos(z*+y*), R = {(x,y) : 2* + y* < 7w/2} The
first partials are
fo=—2sin(2* + vz, f, = —2sin(2>+ 1)y

To set up the double integral for the surface area, we switch to polar
coordinates.

S://Rmdfl://R\/1+4(m2+y2)sin(x2+y2)dA
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38. This is a general case for Q20. We need to show that the sur-
face area of the cone z = kv/x% + y? over the region R = {(z,y) :

22 4+ y? <r?}is mr?Vk2 + 1.
kx ky
fx = ) fy - — .
/22 + 42 /22 + o2

The surface area is hence

Sz/LmdA://RmdA:Area(R)m

=ar’VEk2 +1



