Review for MAT342 Midterm

October 2015

Definition of complex numbers, their real and imaginary parts and absolute value and argument
Complex Conjugate, Complex numbers in polar form, Euler's formula
Exponential function and its property $\exp (z+w)=\exp (z) \exp (w)$
ϵ-neighborhood of a complex number and deleted neighborhoods, ϵ-neighborhood of ∞
Open and closed sets, boundaries and accumulation points
Convex and connected sets, domains and regions
Functions of a complex variable, polynomials and rational functions, mappings
Limits and derivatives, continuity, limits at ∞, Analytic functions, Entire functions, Cauchy-Riemann equations
Theorem: A bounded sequence has a convergent subsequence.
Corollary: A continuous real-valued function on a closed bounded set assumes a maximum and a minimum.
Rules for differention: derivatives of sum, difference, product and quotient of functions. Chain rule
Theorem: If a function has real and imaginary parts that have continuous partial derivatives and satisfy the Cauchy-Riemann equations, then it is analytic.
Harmonic functions, The real and imaginary parts of an analytic function are harmonic. harmonic conjugates
Logarithm function and trig. functions of complex variables and their derivatives and inverses, hyperbolic functions, complex exponents

