Question	Points	Score
1	10	
2	20	
3	30	
4	50	
5	20	
6	40	
7	10	
8	20	
Total:	200	

Stop!
Do Not Open This Exam Booklet Until You Are Told to Do So!

Exam Rules:

No Calculators. No Books. No Notes.
Please show all your work, explain your reasoning, and cross out anything we should ignore when grading this exam. Also where possible, please always give exact answers (for example, " $\sqrt{5}$ " rather than the decimal approximation " 2.23 "). Good luck!

You have 150 minutes to complete this exam.
There are 8 questions, for a total of 200 points. Good luck!

Id: \qquad

1. (10 points) Find the solution $y(x)$ of the intial value problem

$$
\begin{aligned}
\frac{d y}{d x} & =y^{2} \sin x \\
y(0) & =1
\end{aligned}
$$

2. After 3 days a sample of radon- 222 decayed to 60% of its original amount.
(a) (10 points) What is the half-life of radon-222?
(b) (10 points) How long would it take the sample to decay to 10% of its original amount?
3. Determine whether the following sequences are convergent or not. If convergent compute their limits. Show your work!
(a) (10 points)

$$
a_{n}=\frac{9^{n+1}}{10^{n}}
$$

(b) (10 points)

$$
a_{n}=\frac{n^{3}}{n^{2}+1}
$$

(c) (10 points)

$$
a_{n}=\ln (n+2)-\ln (n+1)
$$

4. (a) (10 points) Does the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}=\frac{1}{2(\ln 2)^{2}}+\frac{1}{3(\ln 3)^{2}}+\cdots
$$

converge or diverge? Explain why.
(b) (15 points) Does

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{n}}{n+1}=\frac{1}{2}-\frac{\sqrt{2}}{3}+\frac{\sqrt{3}}{4}-\frac{2}{5}+\cdots
$$

converge or diverge? Is the series absolutely convergent? Explain why.
(c) (10 points) Find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{5^{n}}
$$

Please show your work and explain your reasoning!
(d) (15 points) Does the series

$$
\sum_{n=1}^{\infty} \frac{5^{2 n}}{n^{2} 9^{n}}
$$

converge of diverge? Explain why.

Name:
Id:
5. (20 points) Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{n}{2^{n}}(x-1)^{n}
$$

Please show your work and explain your reasoning!
6. (a) (20 points) Expand the function $f(x)=\frac{x}{(1-x)^{2}}$ as a power series nearby $x=0$; in other words compute the MacLaurin series for $f(x)$. What is its radius of convergence?
(b) (20 points) Compute the sum of the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}
$$

How many terms of the series does one need to add/substract in order to compute the sum correct to one decimal place?
7. (10 points) Use Taylor/MacLaurin series to evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

8. (a) (15 points) Use power series to solve the initial value problem

$$
y^{\prime}=x^{2} y, \quad y(0)=1
$$

(b) (5 points) What is the radius of convergence of the solution? Can you express the power series solution in terms of known elementary functions?

