
MAT 127: Calculus C, Spring 15
Solutions to Midterm II

Problem 1 (15pts)

(a; 7pts) Show that the function y(x) = −e−x sinx is a solution to the initial-value problem

y′′ + 2y′ + 2y = 0, y = y(x), y(0) = 0, y′(0) = −1.

Show your work and/or explain your reasoning.

Compute y′(x) and y′′(x) to check that the ODE is satisfied:

y(x) = −e−x sinx =⇒ y′(x) = −
(

− e−x sinx+ e−x cosx
)

= e−x sinx− e−x cosx

=⇒ y′′(x) = −e−x sinx+ e−x cosx−
(

− e−x cosx− e−x sinx
)

= 2e−x cosx

=⇒ y′′ + 2y′ + 2y = 2e−x cosx+ 2
(

e−x sinx− e−x cosx
)

+ 2
(

− e−x sinx
)

= 0. X

It remains to check that the initial condition are satisfied:

y(0) = −e−0 sin 0 = −1 · 0 = 0, X y′(0) = e−0 sin 0− e−0 cos 0 = 1 · 0− 1 · 1 = −1 X

Grading: y′(x) 1pt; y′′(x) from y′(x) 2pts; plug in into DE and simplify 1pt each; check initial
conditions 1pt each; no carry-over penalties

(b; 8pts) Find the general solution of the differential equation

y′′ + 2y′ + 2y = 0, y = y(x).

Show your work and/or explain your reasoning.

Since y(x)=−e−x sinx is a solution of this second-order linear homogeneous ODE with constant
real coefficient

y(x) = e−x sinx and y(x) = e−x cosx

are also solutions (by the structure theorem for solutions of such equations). Furthermore, the
general solution of the differential equation is

y(x) = C1e
−x cosx+ C2e

−x sinx

Alternatively, the associated polynomial equation for this differential equation is

r2 + 2r + 2 = 0 =⇒ r1, r2 = −1 +
√
1− 2 = −1 + 1i.

This is the complex case with p=−1 and q=1, which again gives the above general.

Grading: in the 2nd approach, 3pts for the roots, 2pts each for y(x) containing e−x sinx and
e−x cosx (only 1pt each for e(−1+i)x and e(−1−i)x), with remainder for the correct formula; if the
roots are obtained incorrectly, 1pt for setting up the polynomial and up to 4 additional points for
converting the roots to the corresponding equation for y(x); in the 1st approach, a little bit of
explanation is required (anything in parentheses above is not required); if no explanation is given,
4pts for correct answer, 2pts if y(x) contains only one constant or missing e−x cosx or e−x sinx;
1pt for y(x) = Ce−x cosx or y(x) = Ce−x sinx

Solution to this problem continues on the next page.



Alternatively, one could first use the second approach in (b) to find that the general solution to
the differential equation is

y(x) = C1e
−x cosx+ C2e

−x sinx

and then find C1 and C2 so that the two initial conditions in (a) hold. In order to do this, compute
y′(x), y(0), and y′(0) and set them equal to the given initial condition:

y′(x) = C1

(

− e−x cosx− e−x sinx
)

+ C2

(

− e−x sinx+ e−x cosx
)

= (C2 − C1) e
−x cosx− (C1+C2) e

−x sinx ,

y(0) = C1e
−0 cos 0 + C2e

−0 sin 0 = C1

y′(0) = (C2 − C1) e
−0 cos 0− (C1+C2) e

−0 sin 0 = C2 − C1 ,

=⇒
{

y(0) = C1 = 0

y′(0) = C2 − C1 = −1
=⇒ C1 = 0, C2 = −1.

So the solution to the initial-value problem in (a) is

y(x) = 0 · e−x cosx− 1 · e−x sinx = −e−x sinx ,

which is the function given in (a).

Grading: finding the general solution as in the second approach to part (b) on the previous page;
after that, finding y′(x) 2pts, setting up the system 2pts; finding C1 and C2 2pts, and concluding
the argument 1pt.

Remark: using the last approach indicates solid understanding of how to solve initial-value prob-
lems, but also misunderstanding of the basic concept of how to check that a given function solves
a given initial-value problem.
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Problem 2 (20pts)

The graph on the left shows a trajectory in the phase plane for the predator-prey model described
by the system of ODEs on the right. R denotes the number of rabbits and W denotes the number
of wolves. Initially (at time t=0), R=1000 and W =200.

{

dR
dt = R− 1

200RW
dW
dt = − 1

10W + 1
50,000RW

W

R

100

200

300

400

5000 10000 15000

P0
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P3

(a; 10pts) Sketch a rough graph of R as a function of t = time.

R

t

5000

10000

15000
R

P2 P2 P2

P3 P3 P3

P0
P0 P0 P0

P1 P1 P1

First, determine the key points on the phase trajectory in the order they are traversed as t increases
(counter-clockwise in the above diagram). These are

P0 = (1000, 200), P1 ≈ (5000, 100), P2 ≈ (15000, 200), P3 ≈ (5000, 350).

Mark the first coordinate of each of the key points of the trajectory on a diagram with horizontal
t-axis and a vertical R-axis in the same order. Connect them by a smooth curve with the only
minimum at P0 and the only maximum at P2. Since the phase trajectory is periodic, so is the
graph of R; so repeat this curve several times.

(b; 2pts) When the number of rabbits reaches its global maximum, about how many wolves are
there? Answer only.

This is the W -coordinate of the right-most point on the graph, i.e. of P2: 200

(c; 2pts) When the number of rabbits reaches its global maximum, is the wolf population increasing
or decreasing? Answer only.

From P2, the function W is increasing which makes sense (lots of rabbits is beneficial to wolves).
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(d; 6pts) Find the equilibrium solutions of the system of ODEs.

The equilibrium (constant) solutions are the pairs of numbers (R,W ) such that

{

dR
dt = 0
dW
dt = 0

⇐⇒
{

R(1− 1
200W ) = 0

− 1
10W (1− 1

5,000R) = 0
⇐⇒

{

R = 0 or W = 200

W = 0 or R = 5, 000

Choosing one condition from the first line and one from the second, we obtain 2×2=4 systems of
linear equations

{

R = 0

W = 0

{

R = 0

R = 5, 000

{

W = 200

W = 0

{

W = 200

R = 5, 000

The second and third systems of equations have no solutions, while the first and the forth give us

(R,W ) = (0, 0), (5000, 200)

Note that the coordinates of the second equilibrium correspond to the R-coordinate of the W -
minimum and maximum on the phase trajectory (i.e P1 and P3) and the W -coordinate of the
R-minimum and maximum on this trajectory (i.e P0 and P2).
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Problem 3 (20pts)

Write your answer to each question in the corresponding box in the simplest possible form. Justify
your answers in the spaces below.

(a; 7pts) Find the limit of the sequence an = n2
(

1−cos(1/n)
)

.
1

2

lim
n−→∞

an = lim
n−→∞

1− cos(1/n)

1/n2
= lim

x−→0

1− cos(x)

x2
= lim

x−→0

0 + sin(x)

2x
= lim

x−→0

cos(x)

2
=

1

2
.

The third and fourth equalities use l’Hospital, which is applicable here because 1−cos(x), x2−→0
and sin(x), x−→0 as x −→ 0.

(b; 7pts) Find the limit of the sequence 2

√
2,

√

2
√
2,

√

2

√

2
√
2,

√

2

√

2

√

2
√
2, . . .

Here is a quick approach that works in this case:

an = 2
1

2 · 2 1

4 · 2 1

8 · . . . 2 1

2n = 2
1

2
+ 1

4
+ 1

8
+...+ 1

2n = 21−
1

2n = 21 · 2− 1

2n −→ 2 · 2− 1

∞ = 2 · 1 = 2

Here is another approach that works more generally. This sequence is recursively defined by
a1 =

√
2, an+1 =

√
2an. If it converges to some number a, then

a = lim
n−→∞

an = lim
n−→∞

an+1 = lim
n−→∞

√
2an =

√

2 lim
n−→∞

an =
√
2a;

so a =
√
2a or a2 − 2a = 0. This gives a = 2, 0; since an≥1 for all n (square root of two numbers

greater than 1 is greater than 1), the limit a = 2 provided it exists at all.

(c; 6pts) Write the number 1.050 = 1.0505050 . . . as a simple fraction.
104

99

1.050 = 1 +
5

100
+

5

1002
+ . . . = 1 +

5/100

1− 1
100

= 1 +
5/100

99/100
= 1 +

5

99
=

104

99
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Problem 4 (10pts)

Determine whether each of the following sequences converges or diverges. In each case, circle your
answer to the right of the question and justify it in the space provided below the question. If the
sequence converges, find its limit.

(a; 5pts) an =
(−1)nn3

n3 + 2n2 + 1
converge diverge

Divide the top and bottom of the fraction by the highest power of n:

an = (−1)n
n3/n3

n3/n3 + 2n2/n3 + 1/n3
= (−1)n

1

1 + 2/n+ 1/n3
.

As n −→ ∞, the above fraction approaches

1

1 + 2/n+ 1/n3
−→ 1

1 + 2/∞+ 1/∞3
=

1

1 + 0 + 0
= 1.

However, (−1)n is 1 when n is even and −1 when n is odd. So, the terms an with n even converge
to 1, while the terms an with n odd converge to −1. Thus, the entire sequence an diverges (it keeps
on jumping between near 1 and near -1; “2 limits” means “no limit”).

Grading: wrong answer 0pts regardless of explanation; correct answer circled 1pt; reasonable
explanation up to 4pts (anything in parenthesis not required)

(b; 5pts)

{

1, 1 +
1

2
, 1 +

1

2
+

1

3
, 1 +

1

2
+

1

3
+

1

4
, . . .

}

converge diverge

This is the sequence of partial sums for the harmonic series
∞
∑

n=1

1

n
:

sn =
n
∑

k=1

1

k
.

The harmonic series is a p-Series with p=1 and thus diverges by the p-Series Test. By definition,
this means that the sequence of partial sums sn diverges.

Grading: wrong answer 0pts regardless of explanation; correct answer circled 1pt; reasonable
explanation up to 4pts
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Problem 5 (15pts)

(a; 7pts) Determine whether the following series converges or diverges

∞
∑

n=1

ne−n

Circle your answer above and justify it below.

The quickest way here is to use the Ratio Test of Section 8.4 (because of e−n):

|an+1|
|an|

=
(n+1)e−(n+1)

ne−n
=

(

1 +
1

n

)

· e
−ne−1

e−n
=

(

1 +
1

n

)

e−1 −→
(

1 +
1

∞

)

e−1 = e−1 .

Since e−1 = 1/e < 1, the series converges.

We can also use the Limit Comparison Test. Note that 0 < e−n/2,
∞
∑

n=1

e−n/2 converges being a

geometric series with r=1/
√
e < 1, and

lim
n−→∞

ne−n

e−n/2
= lim

n−→∞

ne−n/2 = 0,

since the exponential dominates. Thus, our series also converges.

The Comparison Test can be used as well. If f(x)=xe−x/2,

f ′(x) = x′e−x/2 + x
(

e−x/2
)

′

= e−x/2 + xe−x/2 · (−1/2) =
1

2
e−x/2(2−x).

So f(x) ≤ f(2) = 2e−2/2 < 1 for x≥2 and thus ne−n≤e−n/2 for all n. Since ne−n≥0 and
∞
∑

n=1

e−n/2

converges being a geometric series with r=1/
√
e < 1, our series also converges.

The Integral Test can also be used. The function f(x) = xe−x is positive for x≥1. Since

f ′(x) = x′e−x + x
(

e−x
)

′

= e−x + xe−x · (−1) = e−x(1−x),

f(x) is decreasing for x≥ 1. So the sum converges if and only if

∫

∞

1
xe−xdx does. Integration by

parts gives

∫

∞

1
xe−xdx = −

∫

∞

1
xde−x = −

(

xe−x
∣

∣

∣

∞

1
−
∫

∞

1
e−xdx

)

= −
(

lim
x−→∞

xe−x − 1e−1 + e−x
∣

∣

∣

∞

1

)

= −
(

0− e−1 + e−∞ − e−1
)

= 2e−1 .

Since the integral is finite,
∞
∑

n=1

ne−n converges.
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(b; 8pts) Find all values of p for which the following series converges

∞
∑

n=2

1

n(lnn)p
.

Write your answer in the box to the right and justify it below. p > 1

If p≤ 0, 1/(n(lnn)p) ≥ 1/n whenever lnn ≥ 1 (so for n≥ 3). Since

∞
∑

n=2

1

n
diverges by the p-series

test and 0 ≤ 1/(n(lnn)p),
∞
∑

n=2

1

n(lnn)p
diverges by the Comparison Test whenever p≤0.

Suppose p> 0. The function f(x) = 1/(x(lnx)p) is then positive and decreasing for x≥ 2. Thus,
the sum converges if and only if

∫

∞

2

1

x(lnx)p
dx =

∫

∞

ln 2

1

up
du

does. For p=1, we get
∫

∞

ln 2

1

u
du = lnu

∣

∣

∣

∞

ln 2
= ln∞− ln ln 2 = ∞;

so the sum diverges. If p<1,

∫

∞

ln 2

1

up
du =

1

1− p
u1−p

∣

∣

∣

∞

ln 2
=

1

1− p

(

∞1−p − (ln 2)1−p
)

= ∞ ,

since 1−p>0; so the sum diverges. Finally, if p>1,

∫

∞

ln 2

1

up
du =

1

−p+ 1
u−p+1

∣

∣

∣

∞

ln 2
= − 1

p− 1

(

∞−(p−1) − (ln 2)−(p−1)
)

= − 1

p− 1

(

0− (ln 2)−(p−1)
)

=
1

p− 1
(ln 2)−(p−1) ,

since p−1>0; so the sum converges. Thus,
∞
∑

n=2

1

n(lnn)p
converges if and only if p>1. This is the

same answer as in the p-Series Test.
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Problem 6 (20pts)

For each of the following series, determine whether it converges and if so, find its sum. Simplify
your answers as much as possible and justify them.

(a; 8pts)
∞
∑

n=1

1 + 4n

1 + 3n

Since 4n≥3n,
1+4n

1+3n
≥1. Since 1≥0 and the series

∞
∑

n=1

1 = 1 + 1 + 1 + . . .

diverges, our series diverges by the Comparison Test.

We can also use the Test for Divergence:

lim
n−→∞

1 + 4n

1 + 3n
= lim

n−→∞

1/3n + 4n/3n

1/3n + 3n/3n
= lim

n−→∞

1/3n + (4/3)n

1/3n + 1
=

0 + (4/3)∞

0 + 1
= ∞.

Since the limit of the initial sequence is not zero (it does not even exist by MAT 127 definition),

the series diverges

We can also compare to the divergent geometric series

∑ 1

2
· 4

n

3n
=

1

2

∑

(

4

3

)n

,

as both series have positive terms. Since

1 + 4n

1 + 3n
− 1

2

(

4

3

)n

=
1 + 4n

1 + 3n
− 1

2
· 4

n

3n
=

1

2
· 2 · 3

n(1+4n)− 4n(1+3n)

(1+3n)3n

=
3n · 4n − 4n + 2 · 3n

2 · 3n(1+3n)
=

4n(3n−1) + 2 · 3n
2 · 3n(1+3n)

≥ 0,

our series has bigger terms and therefore must also diverge

Alternatively, since the terms in our series look like 4n/3n = (4/3)n, we can limit-compare this
series to the geometric series

∑

(4/3)n; this diverges, since |4/3| ≥ 1. This limit-comparison can
be made, since both series have positive terms and

(1+4n)/(1+3n)

4n/3n
=

1+4n

4n
· 3n

1+3n
=

(

1/4n+1) · 3n/3n

1/3n+3n/3n

=
(

1/4n+1) · 1

1/3n+1
−→ (0+1) · 1

0+1
= 1.

Since the limit is nonzero, our series diverges because the other series does.

Finally, we can also use the Ratio Test for Series:

|an+1|
|an|

=
(1+4n+1)/(1+3n+1)

(1+4n)/(1+3n)
=

1+4n+1

1+4n
· 1+3n

1+3n+1
=

1/4n+4n+1/4n

1/4n+4n/4n
· 1/3n+3n/3n

1/3n+3n+1/3n

=
1/4n+4

1/4n+1
· 1/3

n+1

1/3n+3
−→ 0+4

0+1
· 0+1

0+3
=

4

3
.

Since 4/3 > 1, the series diverges
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(b; 12pts)
∞
∑

n=2

2

n2 − 1
Hint: partial fractions.

By (quick) partial fractions,

1

n2 − 1
=

1

(n−1)(n+1)
=

1

+1 − ( −1 )

(

1

n −1

− 1

n +1

)

=
1

2

(

1

n− 1
− 1

n+ 1

)

Thus, the sequence of partial sums is given by

sn =
k=n
∑

k=2

(

1

k−1
− 1

k+1

)

=

(

1− 1
3

)

+

(

1

2
− 1

4

)

+

(

1
3 − 1

5

)

+

(

1
4 − 1

6

)

+ . . .+

(

1

n−1
− 1

n+1

)

= 1 +
1

2
− 1

n
− 1

n+1

The second equality above is obtained by canceling the negative term in the k-th summand for
k = 2, 3, . . . , n−2 with the positive term two summands later. This leaves the positive terms in
the first two summands and the negative terms in the last two summands (this also gives the right
answer for n = 2). Since 1/n −→ 0 as n −→∞, the sequence sn converges; thus the series also
converges and

∞
∑

n=1

2

n2 − 1
= lim

n−→∞

sn = 1 +
1

2
=

3

2

Below are alternative ways to show that the series converges, but they do not determine its limit.

Since the terms in the above series look like
∑

1/n2, limit-compare the given series to
∑

1/n2.
The latter series is a p-series with p=2>1 and thus converges. This limit-comparison is applicable
here because both series have positive terms and

1/(n2 − 1)

1/n2
=

1

(n2 − 1)/n2
=

1

1− 1/n2
−→ 1

1− 1/∞ = 1.

Thus, our series converges because the other series does.

We can also compare our series to the convergent p-series

∑ 1

n2/2
= 2

∑ 1

n2
.

Since n2−1 >n2/2 if n≥ 2, 1/(n2−1) < 1/(2n2). Since both series have positive terms and the
“larger” p-series converges, our series also converges.

The Integral Test can also be applied with f(x) = 1/(x2−1), since this function is positive and
decreasing for x≥2. In order to compute the integral, use the partial fractions above and carefully
take the limit of anti-derivative as x−→∞.

10



Grading for 6a: sum converges 0pts regardless of explanation; sum diverges 1pt; justification
up to 7pts, with penalties for missing condition checks (depending on convergence/divergence test
used) and computational errors

Grading for 6b: PFs correct 4pts (-1pt each if 1/2 is wrong or the overall sign is reversed; -2pts
if fractions have the same sign; -2pts for wrong denominators); clear indication or statement of
two-step cancellation 3pts; simplifying to final answer for sn 1pt; limit of {sn} and justification
1pt each; series converges and sum 1pt each; no penalty for carryover errors if feasible (e.g. if
1/2 is incorrect; if PFs are badly messed up, resulting in no cancellations in sn, likely loss of all
subsequent points); if at any point, the infinite sum is split into two divergent sums, no more than
8pts for the question even if the rest is done right.

Grading for 6b (non-PF approach): sum diverges 0pts regardless of explanation; sum converges
2pts; justification up to 3pts (including positivity statements); not in addition to any points above
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