MATH 127

Solutions to First Midterm

1. A culture of bacteria grows at a rate proportional to the number of bacteria present in the culture. At noon on January 24, there were 5 thousand bacteria. At 2 PM, there were 20 thousand present.
(a) 12 points Give a formula for $B(t)$, the number of bacteria in the culture t hours after noon on January 24.

Solution: Since the growth rate of the bacteria is proportional to the number present, we have the differential equation

$$
B^{\prime}(t)=k B(t)
$$

where t is the time in hours since noon, and $B(t)$ is the number of bacteria in thousands.
This is a separable equation, so we separate variables to obtain

$$
\begin{aligned}
\int \frac{d B}{B} & =\int k d t \\
\ln |B| & =k t+c
\end{aligned}
$$

exponentiating both sides,

$$
|B|=e^{k t+c}
$$

so, since we can write $\pm e^{c}$ as an arbitrary constant A, we have

$$
B=A e^{k t} .
$$

(Many students just remembered the formula for exponential growth and skipped directly to this step. That's fine, too.)
From the initial condition, we know $B(0)=5=A e^{0}=A$. Since we also have $B(2)=20$, we can solve for k :

$$
\begin{aligned}
20 & =5 e^{2 k} \\
4 & =e^{2 k}
\end{aligned}
$$

Taking logs,

$$
\ln 4=2 k
$$

so $k=\frac{\ln 4}{2}$, or $k=\ln 2$.
So

$$
B(t)=5 e^{t \ln 2}=5 \cdot 2^{t}
$$

(either form is OK. Many people also wrote $5 e^{\frac{\ln 4}{2} t}$, which is equivalent.
(b) 8 points When will there be 100 thousand bacteria in the culture?

Solution: To answer this, we need to find the value of t so that $B(t)=100$. Since we have $B(t)=5 e^{t \ln 2}$ from the previous part, we solve

$$
\begin{aligned}
100 & =5 e^{t \ln 2} \\
20 & =e^{t \ln 2}
\end{aligned}
$$

Now take the log of both sides,

$$
\begin{gathered}
\ln 20=t \ln 2 \\
\frac{\ln 20}{\ln 2}=t
\end{gathered}
$$

That is, about 4.3 hours after noon.
2. 20 points Consider the initial value problem given by

$$
y^{\prime}=2 x-y \quad y(0)=0
$$

Use Euler's method with a stepsize $h=1$ to find an approximation to $y(3)$.
To receive full credit, show your intermediate steps clearly.

Solution: Our initial point on our numeric solution is $\left(x_{0}, y_{0}\right)=(0,0)$. The next approximation is given by $x_{1}=x_{0}+h$ and $y_{1}=y_{0}+h \cdot y^{\prime}\left(x_{0}, y_{0}\right)$, so we need to find the slope of the solution at $(0,0)$. Since our stepsize $h=1$, things are easier.

$$
y^{\prime}(0,0)=2 \cdot 0-0=0 \quad \text { so } \quad\left(x_{1}, y_{1}\right)=(1,0+0)=(1,0) .
$$

Now we compute the slope at $(1,0)$ for the next point. We have

$$
y^{\prime}(1,0)=2 \cdot 1-0=2 \quad \text { so } \quad\left(x_{2}, y_{2}\right)=(2,0+2)=(2,2) .
$$

Continuing in this way,

$$
y^{\prime}(2,2)=2 \cdot 2-2=2 \quad \text { so } \quad\left(x_{3}, y_{3}\right)=(3,2+2)=(3,4)
$$

Our final approximation is then $y(3)=4$.
3. Consider the second order linear differential equation

$$
y^{\prime \prime}-4 y=0
$$

(a) 10 points Write a formula for the general solution $y(t)$.

Solution: We look for solutions of the form $y=e^{k t}$, so we plug this in to get

$$
k^{2} e^{k t}-9 e^{k t}=0
$$

This factors as

$$
e^{k t}(k-3)(k+3)=0,
$$

which only has solutions when $k=3$ or $k=-3$. This means the general solution to this differential equation is

$$
y=A e^{3 t}+B e^{-3 t},
$$

where A and B are arbitrary constants.
(b) 10 points Let $y(t)$ be the specific solution with $y(0)=1$ and $y^{\prime}(0)=0$. Write a formula for $y(t)$.

Solution: We need to determine A and B subject to the given initial conditions. From $y(0)=1$, we have

$$
1=A e^{0}+B e^{0}=A+B \quad \text { so } \quad B=1-A
$$

That is, $y(t)=A e^{3 t}+(1-A) e^{-3 t}$, and so

$$
y^{\prime}(t)=3 A e^{3 t}-3(1-A) e^{-3 t}
$$

Plugging in $y^{\prime}(0)=0$ gives us

$$
0=3 A-3(1-A) \quad \text { that is } \quad 0=6 A-3 \quad \text { or } \quad A=\frac{1}{2}
$$

Hence, $B=1 / 2$ and our solution is

$$
y(t)=\frac{e^{3 t}}{2}+\frac{e^{-3 t}}{2}
$$

4. The direction field for a differential equation is shown below.

(a) 15 points On the direction field, sketch and clearly label the three solutions with initial conditions

$$
y_{1}(0)=0.5 \quad y_{2}(0)=1 \quad y_{3}(0)=2
$$

(b) 5 points Are there any equilibrium solutions (also called stationary solutions, or constant solutions)? If there are, identify them. If not, give a reason why not.

Solution: There are no equilibrium solutions (at least not for $0 \leq y \leq 2$).
If there were, such a solution would be of the form $y(x)=c$ for some constant c, and its graph would be a horizontal line. Along this solution, the direction field must be slope 0 for all x. Since there are no such lines in the given direction field, we can have no equilibrium solutions.
5. Write solutions to the following initial-value problems.
(a) 10 points $y^{\prime}=\frac{e^{3 x}}{y^{2}} \quad y(0)=2$

Solution: This is a separable equation, so we separate the variables to obtain

$$
\int y^{2} d y=\int e^{3 x} d x
$$

and so

$$
\begin{aligned}
& \frac{y^{3}}{3}=\frac{e^{3 x}}{3}+c \\
& y=\sqrt[3]{e^{3 x}+c}
\end{aligned}
$$

Now using the initial condition $y(0)=2$, we have

$$
2=\sqrt[3]{1+c}
$$

So $c=7$ and our solution is

$$
y=\sqrt[3]{e^{3 x}+7}
$$

(b)

10 points $y^{\prime}=1+y^{2} \quad y(1)=0$
Solution: This equation is also separable. Separating gives

$$
\int \frac{d y}{1+y^{2}}=\int d x
$$

so

$$
\arctan y=x+c \quad \text { and hence } \quad y=\tan (x+c)
$$

The initial condition gives us $0=\tan (1+c)$, and since $\tan 0=0$, we know that $c=-1$. Hence the desired solution is

$$
y=\tan (x-1)
$$

