
MAT 127: Calculus C, Spring 2015
Course Summary III

Extremely Important: sequences vs. series (do not mix them or their convergence/divergence
tests up!!!); what it means for a sequence or series to converge or diverge; power series

Very Important: convergence/divergence tests for series; radius and interval of convergence for
power series; differentiation, integration, and limits of functions via power series; Taylor series

Important: estimating infinite sums by finite sums; finding radius and interval of convergence of
power series; determining Taylor series of functions related to standard ones; applications of power
series to computing sums of series

I: Series (cont’d)

I.10 The Alternating Series Test applies to a narrow, but important, set of series with terms of
different signs:

if lim
n−→∞

an =0, |an| ≥ |an+1|, and the signs of an alternate (an > 0 for every n odd and

an<0 for every n even, or the other way around), then the series
∞
∑

n=1

an converges

The alternating-sign condition is typically exhibited by the presence of (−1)n or (−1)n−1=−(−1)n;
however, make sure to also check the first two conditions before concluding that the series converges.
Typical examples are the series like

∞
∑

n=1

(−1)n

n
,

∞
∑

n=1

(−1)n−1 (lnn)
2

n
;

both converge by the AST. The Alternating Series Test is a convergence test only: it states that
a series converges if it meets 3 conditions. It can never be used to conclude that a series diverges;
in this sense, it is the opposite of the most important divergence test, which can never be used to
conclude that a series converges. If the first condition in the Alternating Series Test is not satisfied,
the series does indeed diverge, but by the most important divergence test. However, there are lots of
series that fail either the second or third condition (or both), but still converge; for example, there
are convergent series with only positive terms, that decay to zero, but are not strictly decreasing, e.g.

∞
∑

n=1

2 + (−1)n

n2
.

The Alternating Series Test is a consequence of the definition of convergence for series (convergence
of the sequence of partial sums) and the Monotonic Sequence Theorem.

I.11 The substance of Absolute Convergence Test is that introducing some minus signs into a
convergent series with positive terms does not ruin the convergence:

if the series
∞
∑

n=1

|an| converges, then so does the series
∞
∑

n=1

an



This test is useful when the signs are random, as opposed to strictly alternating as required for

the Alternating Convergence Test. For example, the series
∞
∑

n=1

sinn

n2
converges by the ACT, because

the series
∞
∑

n=1

∣

∣

∣

∣

sinn

n2

∣

∣

∣

∣

=
∞
∑

n=1

| sinn|
n2

converges since 0 ≤ | sinn|/n2 ≤ 1/n2 and the series
∞
∑

n=1

1

n2
converges (this argument uses 3 tests:

Absolute Convergence, Comparison, and p-Series; Limit Comparison Test is less suitable in this
case). The Alternating Series Test cannot be applied in this case, because the signs of sinn do not
alternate:

sin 1, sin 2, sin 3 > 0, sin 4, sin 5, sin 6 < 0;

while the signs usually come in triples, occasionally there are four consecutive terms with the same
sign. While the Absolute Convergence Test is less stringent about the alternating sign condition than
the Alternating Series Test, the former is not a substitute of the latter. While either test can be

used to conclude that the series
∞
∑

n=1

(−1)n

n2
converges, only the Alternating Series Test is applicable

to the series
∞
∑

n=1

(−1)n

n
because the series

∞
∑

n=1

∣

∣

∣

∣

(−1)n

n

∣

∣

∣

∣

=
∞
∑

n=1

1

n

does not converge. Neither of the two tests directly implies that the series

∞
∑

n=1

sinn

n
converges1. As

the Alternating Series Test, the Absolute Convergence Test is a convergence test only; it can never
be used to conclude that a series diverges. The Absolute Convergence Test is a consequence of the
Comparison Test and the addition rule for series.

I.12 The sum of a convergent series
∞
∑

n=1

an can be estimated by a finite sub-sum: the sum

sm =
n=m
∑

n=1

an = a1 + a2 + . . .+ am

of the first m terms; this is the m-th partial sum. As m−→∞, sm approaches the sum of the series,
so that

∞
∑

n=m+1

an =
∞
∑

n=1

an − sm −→ 0.

In some cases, the above difference can be estimated:

1this series does indeed converge because of a more general version of the Alternating Series Test, called Dirichlet’s

Test: if {bn} and {sn} are two sequences such that limn−→∞ bn = 0, bn ≥ bn+1, and there exists C > 0 such that
∣

∣

∑

n=m

n=1
sn

∣

∣ ≤ C for all m, then the series
∑

∞

n=1
snbn converges; in the case of the Alternating Series Test sn=±(−1)n

is just the sign, and so C=1 works
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• if f=f(x) is positive, decreasing, and continuous on [1,∞) and

∫ ∞

1

f(x)dx converges, then

∫ ∞

m+1

f(x)dx <
∞
∑

n=m+1

an <

∫ ∞

m
f(x)dx (I1)

Note that increasing the lower limit (from m to m+1 here) makes the integral smaller because
f >0. In this case, the finite-sum estimate sm is an under-estimate for the infinite sum because
lots of positive terms are dropped from the infinite series.

• if lim
n−→∞

an = 0, |an|> |an+1|, and the signs of an alternate (an>0 for every n odd and an<0

for every n even, or the other way around), then

∣

∣

∣

∣

∣

∞
∑

n=m+1

an

∣

∣

∣

∣

∣

<
∣

∣am+1

∣

∣ and the signs of

∞
∑

n=m+1

an and am+1 are the same (I2)

In this case, the finite-sum estimate sm is an under-estimate for the infinite sum if am<0 and
an over-estimate if am>0 (so determined by the last term used in the estimate).

For example, let’s estimate the sum of the series
∞
∑

n=1

1

n2
to within 1/5. Since f(x) = 1/x2 > 0 is

continuous and decreasing on [1,∞), by (I1) we need to find the smallest integer m such that
∫ ∞

m
f(x)dx =

∫ ∞

m

1

x2
dx =

1

m
≤ 1

5
.

So m=5 and the required finite-sum estimate is

n=5
∑

n=1

1

n2
=

1

1
+

1

4
+

1

9
+

1

16
+

1

25
=

3600 + 900 + 400 + 225 + 144

3600
=

5269

3600

This is an under-estimate for the infinite sum, as only positive terms are dropped off from the latter.

Let’s next estimate the sum of the series
∞
∑

n=1

(−1)n−1

n
to within 1/5. Since this series is alternating

(odd terms > 0, even terms < 0), 1/n −→ 0, and 1/n>1/(n+1), by (I2) we need to find the smallest
integer m such that

∣

∣am+1

∣

∣ =
1

m+ 1
≤ 1

5
.

So m=4 and the required finite-sum estimate is

n=4
∑

n=1

(−1)n−1

n
=

1

1
− 1

2
+

1

3
− 1

4
=

12− 6 + 4− 3

12
=

7

12

This is an under-estimate for the infinite sum, as the last term in the estimate is negative.

Remark: The estimates (I1) and (I2) are closely tied to the Integral Test and the Alternating Series

Test for convergence of series. In principle, there are estimates related to other convergence tests, in
particular the Ratio Test, but they are not discussed in the textbook.
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K: Power Series

K.1 A power series is a function defined by an infinite series of the form

f(x) =
∞
∑

n=0

cn(x−a)n , (K1)

where a is some fixed number, typically 0, called the center of the power series (K1); plugging in
x=a makes all the terms (x−a)n to be 0n. So the center of the power series

f(x) =
∞
∑

n=0

(x+1)n

n!

is x = −1. By convention used in defining power series, (x−a)0 = 1 even if x = a. By a similar
convention, 0!=1 so that

(n+1)!=n! · (n+1)

for all non-negative integers n.

K.2 For each x for which the series (K1) converges, we obtain a number f(x). In particular,

f(a) = c00
0 + c10

1 + c20
2 + . . . = c0;

so the power series (K1) always converges at its center x=a. The most fundamental question about
a power series is the set of the numbers x for which the power series converges. By the Main Theorem
about Power Series, this set can be of one of 3 types, with one types having 4 sub-types:

The power series
∞
∑

n=0

cn(x−a)n converges either

(a) for x=a only;

(b) for all x;

(c) for x in one of the intervals (a−R, a+R), [a−R, a+R), (a−R, a+R], or [a−R, a+R]
for some R>0 and diverges otherwise

(K2)

The four possibilities in (c) are illustrated below:

a−R a a+R x

convergediverge diverge
? ?

According to this theorem, the set of values of x for which a power series converges cannot be ar-
bitrary; it must be an interval, which is centered at the center of the power series, may consist of a
single point, be infinite, or be of finite nonzero length and in the last case can be open, closed, or
half-open (so the series can either converge or diverge at each of the two end-points of the interval;
this is indicated by the question marks in the sketch). The interval on which a power series converges
is its interval of convergence. The number R in (c) is the radius of convergence of the power series;
R=0 in (a) and R=∞ in (b).
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K.3 In order to find the radius of convergence of a power series as in (K1) with cn 6=0 for all n
(≥ some N), use the Ratio Test with an=cn(x−a)n 6=0 (so we are assuming x 6=a, since we already
know that the power series converges for x=a):

lim
n−→∞

|an+1|
|an|

= lim
n−→∞

|cn+1| · |x−a|n+1

|cn| · |x−a|n = |x−a| · lim
n−→∞

|cn+1|
|cn|

. (K3)

In general, the last limit in (K3) does not have to exist. However, in all examples encountered in
this class it either exists or |cn+1|/|cn|−→∞. In these cases:

• if |cn+1|/|cn| −→ ∞, the last number in (K3) is ∞; by the general Ratio Test the series (K1)
diverges for every x 6=a, and so we are in case (a) of (K2) and R=0.

• if |cn+1|/|cn|−→0, the last number in (K3) is 0; by the general Ratio Test the series (K1) converges
for every x 6=a, and so we are in case (b) of (K2) and R=∞.

• if |cn+1|/|cn|−→C 6=0, the last number in (K3) is C|x−a|; by the general Ratio Test the series (K1)
converges if |x−a|<1/C and diverges |x−a|>1/C. So we are in case (c) of (K2) and R=1/C.

Once the radius of convergence is found, find the interval of convergence of the power series.
If R=0, then the interval of convergence is just [a, a]; if R=∞, then the interval of convergence is
(−∞,∞). If R 6=0,∞, it remains to determine whether the power series converges for x=a−R and
for x=a+R, i.e. you have to determine separately whether each of the two power series

f(a−R) =
∞
∑

n=0

cn(−R)n =
∞
∑

n=0

cn(−1)nRn and f(a+R) =
∞
∑

n=0

cnR
n

converges. You will have to use some convergence/divergence tests for series, but not the Ratio

Test (it would give 1 in the limit and so be inconclusive in these two cases). Once this is done, the
interval of convergence will be as in one of the 4 subcases in (c) of (K2).

Remark 1: If cn involves n! in the numerator and the remaining terms are powers and exponentials
of n, such as

√
n+1 or 2n (but not nn), then you’ll be in case (a) of (K2). If cn involves n! in

the denominator and the remaining terms are powers and exponentials of n, such as n3 or 5n (but
not nn), then you’ll be in case (b) of (K2). If cn involves only powers and exponentials of n, such
as n3/

√
n2+n or 3n (but not nn), then you’ll be in case (c) of (K2); this is the case when you’ll

also need to determine whether the series converges or diverges at each of the two end-points of the
interval of convergence separately.

Remark 2: By the above, if |cn+1|/|cn| −→C for some nonnegative number C or for C =∞, then
the radius of convergence of the power series is R=1/C. In general, |cn+1|/|cn| may not approach
anything, including ∞, because it may keep on jumping. For example, |cn+1|/|cn| with n odd might
approach 0 and |cn+1|/|cn| with n even might approach ∞; then 0 and ∞ are said to be limits of

subsequences. There can be lots of such limits of subsequences, but there is always at least one
(possibly ±∞). The largest of such limits is denoted lim sup (and the smallest lim inf). If a sequence
converges, lim sup is just its usual limit. If C is lim sup of the sequence |cn+1|/|cn|, then the radius of
convergence of the power series (K1) is still R=1/C. You can learn more about lim sup in MAT 320.
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K.4 If the radius of convergence of a power series is 0, the power series is rather useless. However, if
its radius of convergence R is positive (possibly ∞), it defines a smooth function f(x) on (a−R, a+R).
This function can be differentiated and integrated by differentiating and integrating the power series
term by term (like a polynomial):

If the radius of convergence R of the power series

∞
∑

n=0

cn(x−a)n is positive (possibly ∞),

the function f(x) =

∞
∑

n=0

cn(x−a)n is smooth on the open interval (a−R, a+R),

• f ′(x) =
∞
∑

n=1

ncn(x−a)n−1 =
∞
∑

n=0

(n+1)cn+1(x−a)n, the radius of convergence of this

power series is still R, and if R 6=∞ and the series for f diverges for x=a±R, so does
the series for f ′;

•
∫

f(x)dx = C +

∞
∑

n=0

cn
n+1

(x−a)n+1 = C +

∞
∑

n=1

cn−1

n−1
(x−a)n, the radius of convergence

of this power series is still R, and if R 6=∞ and the series for f converges for x=a±R,

so does the series for

∫

f(x)dx.

(K4)

So the radius of convergence of a power series does not change under differentiation and integration,
but the interval of convergence may change if R 6=∞: differentiation may remove one or both of
the endpoints from the interval of convergence, while integration may add them to the interval
convergence. For example, the geometric series

∞
∑

n=0

xn = 1 + x+ x2 + . . . (K5)

converges if and only if |x|<1 and for each x such that |x|<1 it converges to 1/(1−x). So the radius
of convergence of the series (K5) is 1, its interval of convergence is (−1, 1), and

1

1− x
=

∞
∑

n=0

xn = 1 + x+ x2 + . . . if |x| < 1. (K6)

Differentiating both sides of (K6) with respect to x gives

1

(1− x)2
=

∞
∑

n=1

nxn−1 = 1 + 2x+ 3x2 + . . . if |x| < 1. (K7)

The radius of convergence of this power series is still 1, while the interval of convergence is still
(−1, 1) because there are no ends to potentially drop off from the interval of convergence of the
power series (K6). Integrating both sides of (K6) from x=0 (this makes C=0 in (K4)) gives

− ln(1− x) =

∫ x

0

1

(1−u)
du =

∞
∑

n=0

1

n+1
xn+1 =

∞
∑

n=1

xn

n
= x+

1

2
x2 +

1

3
x3 + . . . . (K8)

The radius of convergence of this power series is still 1, but the interval of convergence may have
increased by either or both of the two endpoints; this has to be checked separately. Setting x=1 in
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the series in (K8) gives
∞
∑

n=1

1

n
; this series diverges by the p-Series Test. Setting x=−1 in the series

in (K8) gives
∞
∑

n=1

(−1)n

n
; this series converges by the Alternating Series Test. Thus, the interval of

convergence of the power series in (K8) is [−1, 1) and

− ln(1−x) =
∞
∑

n=1

xn

n
= x+

1

2
x2 +

1

3
x3 + . . . if − 1 ≤ x < 1. (K9)

Taking x=1/2 and x=−1 in (K9) gives

− ln(1/2) =
∞
∑

n=1

(1/2)n

n
=

∞
∑

n=1

1

n 2n
=

1

1 · 2 +
1

2 · 22 +
1

3 · 23 + . . . ,

− ln(2) =
∞
∑

n=1

(−1)n

n
= −1

1
+

1

2
− 1

3
+ . . . ,

Since − ln(1/2)=ln(2), we find that

∞
∑

n=1

1

n 2n
= ln 2 =

∞
∑

n=1

(−1)n−1

n
(K10)

Remark 1: You do not need to memorize the two formulas in (K10), but you need to understand
and be able to apply the principles involved in obtaining them; in particular, you have to be able
to find sums of analogous infinite series. You have to remember the formulas for differentiating and
integrating power series given in (K4); remembering the first of the two formulas for each should
suffice and should be fairly easy, since these are just differentiation and integration of (infinite) poly-
nomials. If you are asked to find the sum of an infinite series as in (K10), you need to be able to see
that it is obtained from some power series by replacing x with a specific value in the range of the
convergence of x. You should then be able to recognize the power series and know what function
it sums up to, at least after dropping same factors of n from all terms. By (K4), extra factors of n
correspond to differentiation or integration of the power series you recognize (but be careful to check
that the exponents of x are correct and not shifted by a fixed number; if they are shifted, just take
a power of x outside of the summation). You can then determine the function to which the original
power series corresponds and sum up the starting infinite series by evaluating this function at the
appropriate value of x.

Remark 2: the statements of (K4) regarding the radii of convergence follow from Remark 2 in K.3

above; so you can actually verify them assuming |cn+1|/|cn|−→C for some C ≥ 0 (possibly ∞).

K.5 Limits of functions defined via power series can be easily computed, as long as the limit is taken
at the center of the power series. This generally involves writing out the first few terms of the power
series. For example, the function

f(x) =
∞
∑

n=1

xn

n
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is defined whenever −1 ≤ x ≤ 1 and thus for all x close to 0; so it makes sense to ask about limits
of related functions at x=0. In particular,

lim
x−→0

f(x)− x− 1

2
x2

x3
= lim

x−→0

(

x
1
+ x2

2
+ x3

3
+ x4

4
+ . . .

)

− x− 1

2
x2

x3
= lim

x−→0

(

x3

3
+ x4

4
+ . . .

)

x3

= lim
x−→0

(

1

3
+

1

4
x+ . . .

)

=
1

3
;

on the second line . . . denotes terms involving x and higher powers of x, all of which approach 0 as
x−→0. You can compute this limit using l’Hospital’s rule as well, but it would have to be applied
3 times, re-checking the required assumptions each time (in this case, this would mean checking that
the numerator and denominator both approach 0).

K.6 Two power series with the same center, say 0,

f(x) =

∞
∑

n=0

fnx
n and g(x) =

∞
∑

n=0

gnx
n

can be multiplied together by treating them as infinite polynomials and collecting coefficients of each
power of (x−a):

f(x)g(x) =

( ∞
∑

n=0

fnx
n

)( ∞
∑

n=0

gnx
n

)

=

(

f0 + f1x+ f2x
2 + f3x

3 + . . .

)(

g0 + g1x+ g2x
2 + g3x

3 + . . .

)

= f0g0 + (f0g1 + f1g0)x+ (f0g2 + f1g1 + f2g0)x
2 + (f0g3 + f1g2 + f2g1 + f3g0)x

3 + . . .

=
∞
∑

n=0

( k=n
∑

k=0

fkgn−k

)

xn.

So the coefficient of xn in the product is the sum of n+1 terms, each of which is a product of a term
from the f -series and a term from the g-series. If the f and g-series converge for |x|<R, then so
does the fg-series. For example,

1

(1− x)2
=

1

1− x
· 1

1− x
=

( ∞
∑

n=0

xn
)( ∞

∑

n=0

xn
)

= 1 · 1 + (1 · 1 + 1 · 1)x+ (1 · 1 + 1 · 1 + 1 · 1)x2 + . . . =
∞
∑

n=1

nxn−1 ;

this agrees with (K7), as well as with the k=−2 case of (K17) below. A more interesting example is

1

x2 − 3x+ 2
=

1

(x− 1)(x− 2)
=

1

1− x
· 1/2

1− x/2

=
1

2

( ∞
∑

n=0

xn
)( ∞

∑

n=0

(

x

2

)n)

=
1

2

( ∞
∑

n=0

xn
)( ∞

∑

n=0

xn

2n

)

=
1

2

(

1 · 1 +
(

1 · 1
2
+ 1 · 1

)

x+

(

1 · 1
4
+ 1 · 1

2
+ 1 · 1

)

x2 + . . .

)

=
1

2

∞
∑

n=0

1n+1 − (1/2)n+1

1− 1/2
xn =

∞
∑

n=0

(

1− 1

2n+1

)

xn
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The second-to-last equality above is the (a, b) = (1, 1/2) case of

an+1 − bn+1 = (a− b)
(

anb0 + an−1b1 + . . .+ a1bn−1 + a0bn
)

= (a− b)
(

bn + abn−1 + . . .+ an−1b+ an
)

;

this formula was used to sum up geometric series. Another way to expand 1/(x2−3x+2) around x=0
is to use partial fractions and addition of series, instead of multiplication (addition is much simpler):

1

x2 − 3x+ 2
=

1

(x− 1)(x− 2)
=

1

(−2)− (−1)

(

1

x− 1
− 1

x− 2

)

= − 1

x− 1
+

1

x− 2

=
1

1− x
− 1/2

1− x/2
=

∞
∑

n=0

xn − 1

2

∞
∑

n=0

(

x

2

)n

=
∞
∑

n=0

xn − 1

2

∞
∑

n=0

xn

2n
=

∞
∑

n=0

(

1− 1

2n+1

)

xn

The interval of convergence of this power series can easily be seen to be (−1, 1).

K.7 There is at most one way to expand a function into a power series centered at a given point:

If f(x) =
∞
∑

n=0

cn(x−a)n on (a−R, a+R) for some c0, c1, . . . and R>0, then

• f is a smooth function on (a−R, a+R);

• cn =
f 〈n〉(a)

n!
, where f 〈n〉=f 〈n〉(x) is the n-th derivative of f , f 〈0〉= f , 0!=1.

(K11)

A power series expansion of f around x = a, if it exists, is called the Taylor series expansion of f
around x=a. By the first statement in (K11), the function f(x)= |x| does not admit a Taylor series
expansion around x=a, though it does admit such an expansion around any x=a 6=0:

|x| =
{

a+ 1 · (x−a) on (0,∞), if a>0;

−a− 1 · (x−a) on (−∞, 0), if a<0.

The second statement in (K11) provides a method of determining the Taylor coefficients cn of f
at x=a. However, this method is practical only if all derivatives of f can be computed; this can be
done in some cases, including

• f(x) = p(x) is a polynomial of degree d; then

p(x) = p(a) + p′(a)(x−a) +
p′′(a)

2!
(x−a)2 + . . .+

p〈d〉(a)

d!
(x−a)d , (K12)

because p〈n〉(x) = 0 if n > d; furthermore, p〈d〉(a)/d! = 1. The “series” on the right-hand side of
(K12) converges for all x because it is a finite sum. The equality of the left and right expressions
in (K12) also holds for all x, because of Taylor’s Inequality below (not because the right expression
is a finite sum).

• f(x) = 1/(1−x): in this case f 〈n〉(x)=n!/(1−x)n+1 as can be seen by induction, and so

1

1− x
=

∞
∑

n=0

f 〈n〉(0)

n!
(x− 0)n =

∞
∑

n=0

n!/1n+1

n!
xn =

∞
∑

n=0

xn if |x| < 1. (K13)

The series on the right-hand side is a geometric series with r=x. It converges if and only if |x|<1;
if so, it converges to 1/(1−x) as stated in (K13).
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• f(x)=ex: in this case f 〈n〉(x)=ex for all n and

ex =
∞
∑

n=0

f 〈n〉(0)

n!
(x− 0)n =

∞
∑

n=0

e0

n!
xn =

∞
∑

n=0

xn

n!
. (K14)

The series on the right-hand side converges for all x by the Ratio Test. The equality of the left and
right expressions in (K14) also holds for all x, because of Taylor’s Inequality below (not because
the series converges for all x).

• f(x)=cosx: in this case

f 〈4n〉(x) = cosx , f 〈4n+1〉(x) = − sinx , f 〈4n+2〉(x) = − cosx , f 〈4n+3〉(x) = sinx

for all n, as can be seen by induction. Since cos 0 = 1 and sin 0 = 0,

cosx =
∞
∑

n=0

f 〈n〉(0)

n!
(x− 0)n =

∞
∑

n=0

(−1)n cos 0

(2n)!
x2n =

∞
∑

n=0

(−1)nx2n

(2n)!
. (K15)

The series on the right-hand side converges for all x by the Ratio Test. The equality of the left and
right expressions in (K15) also holds for all x, because of Taylor’s Inequality below (not because
the series converges for all x).

• f(x)=sinx: in this case

f 〈4n〉(x) = sinx , f 〈4n+1〉(x) = cosx , f 〈4n+2〉(x) = − sinx , f 〈4n+3〉(x) = − cosx

for all n, as can be seen by induction. Since cos 0 = 1 and sin 0 = 0,

sinx =

∞
∑

n=0

f 〈n〉(0)

n!
(x− 0)n =

∞
∑

n=0

(−1)n cos 0

(2n+1)!
x2n+1 =

∞
∑

n=0

(−1)nx2n+1

(2n+1)!
(K16)

The series on the right-hand side converges for all x by the Ratio Test. The equality of the left and
right expressions in (K16) also holds for all x, because of Taylor’s Inequality below (not because
the series converges for all x).

• f(x)=(1+x)k, k is any real number and |x|<1 (so that (1+x)k is defined even if k is not integer):
in this case

f 〈n〉(x) = k(k−1)(k−2) . . . (k−n+1)(1+x)k−n

for all n, as can be seen by induction. Thus,

(1 + x)k =

∞
∑

n=0

f 〈n〉(0)

n!
(x− 0)n =

∞
∑

n=0

(

k

n

)

(1+0)k−nxn =

∞
∑

n=0

(

k

n

)

xn if |x| < 1, (K17)

where

(

k

n

)

=
k(k−1)(k−2) . . . (k−n+1)

n!
.

The radius of convergence of the series on the right-hand side is 1 by the Ratio Test, unless k is
a non-negative integer (in which case RHS of (K17) is a finite sum and so converges for all x).
The equality of the left and right expressions in (K17) also holds for |x|< 1, because of 8.7 69
(not because the series converges if |x|<1). The identity (K17) is known as binomial series. The
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geometric series (K13) is a special case of (K17), with k =−1 and x replaced by −x. If k is a
non-negative integer, so that (1+x)k is a polynomial, for all n>k

(

k

n

)

=
k(k−1)(k−2) . . . 0 . . . (k−n+1)

n!
= 0

and so the series (K17) has only finitely many terms, and the identity holds for all x.

In many cases, it is not practical to compute all derivatives of a function and so it may not be
possible to use the formula in (K11) to compute the Taylor coefficients directly. However, it may be
possible to obtain the Taylor expansion for a given function by using one of the “standard” series
(K13)-(K16). For example,

x5e−3x2

= x5
∞
∑

n=0

(−3x2)n

n!
= x5

∞
∑

n=0

(−3)n(x2)n

n!
= x5

∞
∑

n=0

(−3)nx2n

n!
=

∞
∑

n=0

(−3)nx2n+5

n!
;

since the Taylor series for ex converges for all x, so does the above Taylor series for x5e−3x2

. Similarly,

x5

1 + 3x2
=

x5

1− (−3x2)
= x5

∞
∑

n=0

(−3x2)n = x5
∞
∑

n=0

(−3)nx2n =

∞
∑

n=0

(−3)nx2n+5 .

Since the Taylor series for 1/(1−x) converges if |x|<1, the above Taylor series converges if |−3x2| < 1
(whatever is used for x in the power series also has to be used in the bound for convergence); so it
converges if |x|<1/

√
3.

Remark 1: When you use a Taylor series for one function to get a Taylor series expansion for another
function, make sure your final answer is a power series in x (or (x−a) if the center a 6=0), not a power
series in, say, −3x2 or x2, and not a product of a power series with, say, x5 (see the two examples
above). While there are many different ways to describe a function, there is at most one way to
write it as a power series.

Remark 2: You should remember the formula for the Taylor coefficients cn in (K11) or equivalently
the general Taylor expansion formula:

f(x) =
∞
∑

n=0

f 〈n〉(a)

n!
(x−a)n ;

this formula is often used with a = 0. On the other hand, the four formulas (K13)-(K16) will be
provided for the exam (see the last page of Final Exam Information). You can take these four power
series expansions, along with their intervals of convergence, as given and use them as appropriate.
They may be helpful in obtaining other Taylor series, computing limits, and computing sums of
infinite series. For full credit, you must derive any other power series formula you use on the exam,
either directly from the Taylor coefficient formula in (K11) or from one of the four given Taylor
series. In particular, you may need to derive a formula like (K12) for a specific polynomial p(x)
around specified center x= a; see 8.7 11,12 for examples. You should not memorize the binomial
formula (K17); if anything related, with a specific k, appears on the exam, you should not quote the
binomial formula anyway.
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Remark 3: 2 The key to determining whether a given function admits Taylor series expansion around
a given point is Taylor’s Inequality:

∣

∣

∣

∣

f(x)−
n=m
∑

n=0

f 〈n〉(a)

n!
(x−a)n

∣

∣

∣

∣

≤ Cm+1(f ;R)
Rm+1

(m+1)!
if a−R ≤ x ≤ a+R, (K18)

where Cm+1(f ;R) is the maximum value of |f 〈m+1〉(x)| with x in [a−R, a+R]. This inequality is
obtained as follows. Let

Rm+1(x) = f(x)−
n=m
∑

n=0

f 〈n〉(a)

n!
(x−a)n.

Then,

Rm+1(a) = 0, R′
m+1(a) = 0, . . . , R

〈m〉
m+1

(a) = 0.

Thus, by the Fundamental Theorem of Calculus,

R
〈m〉
m+1

(x) = R
〈m〉
m+1

(a) +

∫ x

a
R

〈m+1〉
m+1

(u)du =

∫ x

a
R

〈m+1〉
m+1

(u)du

R
〈m−1〉
m+1

(x) = R
〈m−1〉
m+1

(a) +

∫ x

a
R

〈m〉
m+1

(u)du =

∫ x

a
R

〈m〉
m+1

(u)du

...

Rm+1(x) = R
〈0〉
m+1

(x) = R
〈0〉
m+1

(a) +

∫ x

a
R

〈1〉
m+1

(u)du =

∫ x

a
R

〈1〉
m+1

(u)du

Thus, for all x in [a, a+R]:

∣

∣R
〈m〉
m+1

(x)
∣

∣ ≤
∫ x

a
|R〈m+1〉

m+1
(u)|du ≤

∫ x

a
Cm+1(f ;R)du ≤ Cm+1(f ;R)|x−a|

∣

∣R
〈m−1〉
m+1

(x)
∣

∣ ≤
∫ x

a
|R〈m〉

m+1
(u)|du ≤

∫ x

a
Cm+1(f ;R)|x−a|du ≤ Cm+1(f ;R)

2!
|x−a|2

...

∣

∣R
〈0〉
m+1

(x)
∣

∣ ≤
∫ x

a
|R〈1〉

m+1
(u)|du ≤

∫ x

a

Cm+1(f ;R)

m!
|x−a|mdu ≤ Cm+1(f ;R)

(m+1)!
|x−a|m+1

The same estimates holds if x lies in [a−R, a]. This confirms (K18). By (K18), if

lim
m−→∞

Cn(f ;R)
Rn

n!
= 0,

then

f(x) = lim
m−→∞

n=m
∑

n=0

f 〈n〉(a)

n!
(x−a)n =

∞
∑

n=0

f 〈n〉(a)

n!
(x−a)n ,

and so the Taylor series for f does indeed equal to f on [a−R, a+R]. In particular, this is the case if

• f(x) = p(x) is a polynomial of degree d: since p〈n〉(x)=0 if n>d, Cn(f ;R)=0;

• f(x)=ex, a=0: since f 〈n〉(x)=ex for all n, Cn(f ;R)=eR;

2you can skip this remark in studying for the final exam
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• f(x)=cosx or f(x)=sinx: since f 〈n〉(x) is ± cosx or ± sinx, Cn(f ;R)=1 if R≥π.

K.8 Power/Taylor series can be used to compute sums of some convergent infinite series,
∞
∑

n=0

an, and

even check convergence (in some cases only). Begin by writing the infinite series as evaluation of
some power series at some point:

∞
∑

n=0

an =
∞
∑

n=0

cnx
n
∣

∣

∣

x=b
;

so you need to guess an appropriate sequence {cn} and the evaluation point b, but in some cases
they may be evident. For example,

∞
∑

n=1

1

n 2n
=

∞
∑

n=1

1

n

(

1

2

)n

=
∞
∑

n=1

1

n
xn
∣

∣

∣

x= 1

2

,
∞
∑

n=1

n

2n
=

∞
∑

n=1

n

(

1

2

)n

=
∞
∑

n=1

nxn
∣

∣

∣

x= 1

2

.

You next need to find a simple formula for the function

g(x) =

∞
∑

n=0

cnx
n .

It may not be one of the standard Taylor series, but may become such after dropping a fraction
involving powers of n. For example,

∞
∑

n=1

1

n
xn ,

∞
∑

n=1

nxn −→
∞
∑

n=0

xn =
1

1− x
.

In light of (K4), the function g=g(x) can then be reconstructed from the function f=f(x) through
differentiation and/or integration and possible multiplication by a power of x after each step to
account for differences in the exponent if any; in the case of integration, the constant C has to be
chosen appropriately as well. For example,

∞
∑

n=1

1

n
xn + C =

∫
( ∞
∑

n=1

xn−1

)

dx =

∫

dx

1−x
= − ln(1−x) + C ′ =⇒

∞
∑

n=1

1

n
xn = − ln(1−x);

∞
∑

n=1

nxn = x
∞
∑

n=1

nxn−1 = x

( ∞
∑

n=0

xn
)′

= x

(

1

1− x

)′

=
x

(1− x)2
;

the last equality on the first line is obtained by setting x= 0. The interval of convergence for the
g-series can be determined from the f -series. For example, the radii of convergence of both series

∞
∑

n=1

1

n
xn = − ln(1− x) ,

∞
∑

n=1

nxn =
x

(1− x)2
, (K19)

are 1, since this is the radius of convergence of the geometric series
∞
∑

n=1

xn and the radius of con-

vergence of a power series does not change under differentiation or integration. Since the interval of

convergence of
∞
∑

n=1

xn is (−1, 1), this is also the interval of convergence of the power series
∞
∑

n=1

nxn
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since differentiation can only remove (but not necessarily) the end-points from the interval of con-
vergence (and there are not any end-points to remove in this case). On the other hand, integration

can only add in the end-points; since
∞
∑

n=1

1

n
xn converges for x=−1 and diverges at x=1, the interval

of convergence of this power series is [−1, 1). Once it is established that the required evaluation
point b lies inside of the interval of convergence of the g-series, we obtain

∞
∑

n=0

an =
∞
∑

n=0

cnx
n
∣

∣

∣

x=b
= g(b).

For example, since 1/2 lies in the intervals of convergence of the two power series in (K19),

∞
∑

n=1

1

n 2n
=

∞
∑

n=1

1

n
xn
∣

∣

∣

x= 1

2

= − ln(1− x)
∣

∣

x= 1

2

= − ln(1/2) = ln(2),

∞
∑

n=1

n

2n
=

∞
∑

n=1

nxn
∣

∣

∣

x= 1

2

=
x

(1− x)2

∣

∣

∣

x= 1

2

=
1/2

1/4
= 2;

make sure to simplify the final answer as much as possible.

Remark: If the g-series is already a standard series, you do not need to do any differentiation or
integration; just plug in the evaluation point to get the sum, as long as the evaluation point lies in
the interval of convergence of the power series. In all cases, if you actually know that the infinite
series converges, the evaluation point automatically lies in the interval of convergence. If you are
asked to justify that the series converges, you either need to use one of the convergence/divergence
tests for series or show that the evaluation point lies inside of the interval of convergence. In order to
do so, it is often sufficient to determine just the radius of convergence: if the distance from the center
to the evaluation point is (strictly) less than the radius of convergence, than the evaluation point
lies in the interval of convergence. This is the case in the two examples above, since the distance
from 0 to 1/2 is less than 1.

Warning: Be careful about the lower summation bound. For example,

∞
∑

n=2

1

n 2n
=

∞
∑

n=1

1

n 2n
− 1

1 · 21 = − ln(1− x)
∣

∣

x= 1

2

− 1

2
= − ln(1/2)− 1

2
= ln(2)− 1

2
.

L: Convergence/Divergence Tests for Sequences and Series (recap II)

L.1 The two most important things regarding Chapter 8 are

• distinguishing between sequences and series and their convergence/divergence tests;

• realizing that the convergence/divergence issue concerns what happens with “the infinite tail”.
Thus, dropping the first 159 terms of a sequence or series will not change its convergence/divergence
property. If a series does converge, dropping the first 159 terms will however change the sum of
the infinite series, precisely by the sum of the first 159 terms.
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Confusion about these two points, especially the first one, was the primary reason for the low scores
on the second midterm; not knowing which convergence/divergence test was rather secondary.

Whether a sequence/series converges or diverges depends primarily on the dominant terms and the
presence of any sign-alternating or oscillatory behavior, such as (−1)n or sinn; factors like sin(1/n)
and cos(1/n) are not oscillatory, since they approach 0 and 1, respectively, as n−→0. It is generally
helpful to try to isolate the dominant terms, essentially by factoring them out; if the terms are
given by a fraction, this usually means dividing top and bottom by the dominant term. The main
dominance relations to remember are:

lim
n−→∞

(lnn)p

nq
= 0, lim

n−→∞

np

eqn
= 0, lim

n−→∞

epn

(n!)q
= 0, lim

n−→∞

(n!)

nn
= 0

for any p, q > 0; you should know how to justify these statements. However, one has to be careful
with the dominant terms if there are minus signs between them. For example, while the dominant
term of an=

√
9n+2n − 3n may appear to be 3n=

√
9n, in fact

an =
(√

9n+2n − 3n
)

·
√
9n+2n + 3n√
9n+2n + 3n

=
2n√

9n+2n + 3n
=

(

2

3

)n

· 1
√

1 + (2/9)n + 1
;

so the dominant term is (2/3)n (times 1/2, which does not effect convergence). So the sequence an

converges to 0, while the series
∞
∑

n=1

an converges to something positive by the Limit Comparison Test

applied with bn=(2/3)n (or by the Ratio Test).

If the terms of a sequence or series naturally split as a sum of two terms, one of which gives rise to
a convergent sequence or series, respectively, then you can drop the convergent term in determining
whether the entire sequence or series converges. For example, the sequence an = (1+ (−1)n)/n
converges if and only if the sequence bn=(−1)n/n does, because the sequence cn=1/n converges (to
0, which does not matter in this case); so the sequence an does converge (to 0). Similarly, the series
∞
∑

n=1

1 + (−1)n

n
converges if and only if the series

∞
∑

n=1

1

n
does because the series

∞
∑

n=1

(−1)n

n
converges

by the Alternating Series Test. Since the series
∞
∑

n=1

1

n
does not converge, neither does the series

∞
∑

n=1

1 + (−1)n

n
. However, be careful not to split off a divergent sequence or series. For example,

lim
n−→∞

(√
9n+2n − 3n

)

6= lim
n−→∞

√
9n+2n − lim

n−→∞
3n ;

∞
∑

n=1

(√
9n+2n − 3n

)

6=
∞
∑

n=1

√
9n+2n −

∞
∑

n=1

3n ;

∞
∑

n=1

1

n(n+1)
=

∞
∑

n=1

(

1

n
− 1

n+1

)

6=
∞
∑

n=1

1

n
−

∞
∑

n=1

1

n+1

because neither of the two limits on the right-hand side on the first line exists and neither of the
four sums on the right-hand sides of the second and third lines exists.
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L.2 Convergence/divergence of sequences. A sequence is simply an infinite string of numbers de-
scribed in some way, typically by an explicit formulas, such as an = (−1)nn4/(3n4+1), or by a
recursive formula, such as an+1 =

√
6+an, with some initial condition(s), such as a1 =

√
6. While

sequence is a longer word than series, determining whether a sequence converges or diverges is easier.

(SQ1) If a sequence is given by an explicit formula, it is usually possible to determine whether it
converges through a quick inspection. The goal is to plug in n = ∞, possibly after some
algebraic manipulations. If you get a meaningful number by doing so, the sequence converges
to this number (∞/∞, 0·∞, 0/0,∞−∞, 1∞ are not meaningful numbers). If it is meaningless
to plug in n=∞ right away, begin by splitting an into parts if possible (often not; be careful)
and determining the dominant term; see above. For example,

an = (−1)n
n4

3n4+1
= (−1)n

1

3 + 1/n4
;

so the dominant term here is (−1)n. If plugging in n=∞ makes sense then, you are done:
the sequence converges. For example, it makes sense to plug in n = ∞ into 1/(3+1/n4),
but not into n4/(3n4+1) or (−1)n/(3+1/n4), because ∞/∞ and (−1)∞ do not make sense.
Typically, a sequence would not converge due to either an oscillatory behavior, which may
be exhibited by a factor of (−1)n or sin(n), or because it (or part of it) approaches ∞, as
n/(lnn) does. However, the presence of an oscillatory factor does not ensure divergence; for
example, the sequence

(−1)n
n3

3n4+1
=

(−1)n

n
· 1

3 + 1/n4

converges to 0 because the seemingly oscillatory factor in fact decays to 0. Occasionally (if
terms like 2n, n!, or nn are present), the Ratio Test for Sequences can be useful; see Course

Summary II.

(SQ2) If a sequence is given by a recursive formula, begin by writing out the first few terms to get
an idea whether the sequence converges or diverges. If it appears to converge, the Monotonic

Sequence Theorem may be useful to justify this (so you may need to use induction to show
that either the sequence is bounded above by something and increasing or bounded below and
decreasing). If it appears to diverge, this is likely due to some oscillatory behavior or because
of going off to infinity; you’ll need to justify that this pattern continues as n increases.

(SQ3) The Squeeze Theorem for Sequences may be useful in some cases, but is generally avoidable.
In some cases, it may be possible to replace n by x and compute the limit as x−→∞; this
may allow using l’Hospital (if the required conditions are satisfied), but usually this will not
be the fastest approach.

(SQ4) Taylor series can sometimes be used. For example, ex =
∞
∑

n=0

xn

n!
. Thus,

n2
(

1− e1/n
)

= n2
(

1− (1 +
1

1!n
+

1

2!n2
+

1

3!n3
+ . . .)

)

= −n− 1

2
− 1

6n
− . . .

and so the sequence an = n2(1− e1/n) diverges.
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L.3 Convergence/divergence of series. A series is the sum of terms in a sequence, with the latter
typically given by an explicit formula when series are encountered. While series is a shorter word
than sequence, determining whether a series converges is generally much harder and the concept of
a series itself is significantly more abstract.

First, a series
∞
∑

n=1

an converges if and only if the sequence of partial sums {sn} defined by

sn = a1 + a2 + . . .+ an

does; if this happens, the infinite sum of the an’s is defined to be the limit of the sn’s. What this
means is that you keep on adding more and more terms an to the sum and see if the resulting sums
approach anything. However, in practice, it is almost never possible to find an explicit formula for sn.

Second, there are 7 divergence/convergence tests for series, most with several assumptions that you
have to remember to check before applying the test. After trying to split off a convergent part of
a series (e.g.

∑

1/n2 from
∑

(1/n2 + (sinn)/n3)) and determining the dominant term, you might
want to try doing the following to determine if the series converges.

(SR1) If the sequence {an} does not converge to 0, the series
∑

an diverges. For example, the series

∞
∑

n=1

(−1)n ,
∞
∑

n=1

n

2n+ 1
,

∞
∑

n=1

cos(1/n),
∞
∑

n=1

sin(n),

all diverge. Note that even if lim
n−→0

an=0, the series
∑

an may still diverge; this is the reason

you need the other half-dozen convergence/divergence tests for series.

(SR2) If the series is a geometric series
∑

crn or p-series
∑

1/np, you should know immediately if
it converges or diverges (but do not confuse these with other similarly looking series; these
two types of series are very restrictive, but also very important);

(SR3) If the series involves n in the exponent, e.g. 5n (but not just n5), nn, n!, or more generally
products with the number of factors increasing with n, try the Ratio Test.

(SR4) If the series has positive terms only, determine its leading term, such as some power
of n, and apply the Limit Comparison Test with that power of n; see Course Summary II.
Remember that sin(1/n) and tan(1/n) look like 1/n as n−→∞, since

lim
n−→∞

tan(1/n)

1/n
= lim

n−→∞

sin(1/n)

1/n
· lim
n−→∞

cos(1/n) = lim
x−→0

sin(x)

x
· 1 = 1.

So by the Limit Comparison Test with bn=1/np, the series

∞
∑

n=1

sinp(1/n),

∞
∑

n=1

tanp(1/n)

converge if and only if p>1. However, sin(n) and tan(n) do not look like n as n−→∞.
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(SR5) If the series has positive terms only, but the Limit Comparison Test is not suitable, try
to find a way to use the Comparison Test; see Course Summary II. So you’ll still need to
guess bn, but now the second sequence needs to satisfy different requirements (but still 3 of
them). For example, the Limit Comparison Test with bn=1/n2 cannot be used for the series
∞
∑

n=1

| sinn|
n2

because

lim
n−→∞

an
bn

= lim
n−→∞

| sinn|/n2

1/n2
= lim

n−→∞
| sinn|

does not exist. However, we can use the Comparison Test with bn=1/n2, because

0 ≤ an =
| sinn|
n2

≤ bn =
1

n2

and the series
∞
∑

n=1

1

n2
converges by the p-Series Test with p = 2; see Course Summary II.

This implies that so does the “smaller” series
∞
∑

n=1

| sinn|
n2

. This argument cannot be used to

directly conclude that the series
∞
∑

n=1

| sinn|
n

diverges3, because the divergence of the series

∞
∑

n=1

1

n
does not imply that the “smaller” series

∞
∑

n=1

| sinn|
n

also diverges.

(SR6) For some series with positive terms only, the Integral Test can be used; see Course Sum-

mary II. For this, the function f obtained from the terms of the series by replacing n by
x must make sense for all x ≥ 1 (or at least for x ≥ N for some N); for example, x! does
not make sense. You also have to check that the function f obtained in this way is positive,
continuous, and decreasing for x≥1 (or at least for x≥N for some N). For example, while
the function f(x)= | sinx|/x makes sense for x≥1 and is continuous, it is not decreasing (or

even positive); so the fact that the integral
∫ | sinx|

x dx diverges does not say anything directly
about the infinite series. The most important use of the Integral Test has been to obtain
the p-Series Test; see Course Summary II. It has also been used in the present of lnn. The
Integral Test can be used to show that all of the series

∞
∑

n=1

1

np
,

∞
∑

n=2

1

n(lnn)p
,

∞
∑

n=3

1

n(lnn)(ln lnn)p
, . . . ,

∞
∑

n=1

sinp(1/n),
∞
∑

n=1

tanp(1/n)

converge if and only if p>1. Except for the last 2 series, the relevant integral can actually be
computed fairly easily. In the case of the last 2 series, the integral is much harder to compute,
but it can be shown to be finite if and only if p>1, which suffices; however, it is simpler to
apply the Limit Comparison Test to the last 2 series with bn=1/np.

3this series does indeed diverge because | sinx|+| sin(x+1)|≥1/2 for all x
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(SR7) If the series has terms of different signs, first try to see if the series meets all three
requirements of the Alternating Series Test; satisfaction of the alternating sign requirement
is likely to be indicated by the presence of a factor of (−1)n, but even so do not forget to
check the other two conditions (and make sure to state them).

(SR8) If the series has terms of different signs, but the Alternating Series Test does not apply,
try the Absolute Convergence Test. This may allow you to apply one of the tests suitable
only for series with non-negative terms. The Alternating Series Test is applicable to the series
∞
∑

n=1

(−1)n

n
, but not to the series

∞
∑

n=1

sinn

n2
; the Absolute Convergence Test is applicable to the

second series, but not to the first. Both tests are applicable to the series
∞
∑

n=1

(−1)n

n2
, but

neither to the series
∞
∑

n=1

sinn

n
. The only conclusion you can ever draw from either of these

tests is that the series converges; if you want to show that a series with terms of different
signs diverges, you need to find some other reason.

(SR9) In rare cases, it is possible to determine whether a series converges or diverges by com-

puting the corresponding sequence of partial sums (so directly from the definition of
convergence for series). This can be done when the series has the form

∞
∑

n=1

(

bn − bn+m

)

for some sequence {bn}. If n≥m, the n-th partial sum is then

sn = s1 + s2 + . . .+ sn = (b1 − b1+m) + (b2 − b2+m) + . . .+ (bn − bn+m)

=
k=m
∑

k=1

bk −
k=n+m
∑

k=n+1

bk,
(L1)

since the second term in the k-th pair cancels with the first term in the (k+m)-th, provided
k≤n−m; this leaves the first terms in the first m pairs and the second terms in the last m
pairs. As n−→∞, the first sum on the second line in (L1) does not change; so the sequence

{sn} (and thus the series
∞
∑

n=1

(

bn−bn+m

)

) converges if and only if the sequence
k=n+m
∑

k=n+1

bk does.

This happens if the sequence {bn} converges, but may happen even if {bn} diverges. For
example, all of the series

∞
∑

n=1

(

sin(1/n)−sin(1/(n+1))
)

,
∞
∑

n=1

(

cos(1/n)−cos(1/(n+2))
)

,
∞
∑

n=1

(−1)n
(

ln(n)− ln(n+2)
)

converge, while the series

∞
∑

n=1

(

cos(n)− cos(n+1)
)

,
∞
∑

n=1

(

ln(n)− ln(n+1)
)

,
∞
∑

n=1

(

en − en+1
)
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diverge. This approach is also useful for computing sums of series like
∞
∑

n=1

1

n(n+2)
via partial

fractions and partial sums. However, for showing that this series converges, it is much simpler
to use the Limit Comparison Test.

Each of the convergence tests works only for some series, and the convergence of some series can
be determined using more than one of the convergence tests (but one of them may still be easier
to use). Most importantly, try to see what a given series looks like, in terms of the leading terms
and oscillatory behavior if any; in most cases, you may be able to guess whether it converges or
diverges rather quickly based on these. If you are asked to justify your answer, make sure you check
that all of the conditions of the test you want to use hold; often this will mean stating the required
properties, but sometimes additional justification may be required. For example, it is sufficient to
state that 1/n≥0, but some explanation is required to justify that 1/(n2−n+1)≥0.

Remark: The Comparison Test, Integral Test, and the Alternating Series Test are consequences of
the Monotonic Sequence Theorem, which in turn is a fundamental statement about completeness
of real (but not rational) numbers (“no holes” in the real numbers). The Limit Comparison Test,
Ratio Test for positive sequences, and Absolute Convergence Test are consequences of the Compar-

ison Test. The convergence statement of the general Ratio Test is a consequence of the Ratio Test

for positive sequences and the Absolute Convergence Test; its divergence statement follows from the
most important divergence test for series. So, in principle, whenever Limit Comparison Test, Ratio
Test, or Absolute Convergence Test is usable, so is the Comparison Test (the Integral Test and the
Alternating Series Test are fundamentally different). However, in practice, whenever either Limit

Comparison Test, Ratio Test, or Absolute Convergence Test is usable, it might be much easier to
use one of them than the Comparison Test; for example, while it might be easy to guess a limit-
compare-to sequence {bn}, it may be harder to determine a suitable compare-to sequence {bn}.

In order to do reasonably well on the final exam, you need to be able to decide fairly quickly whether
a given sequence or series converges. It will not be possible to do so without a lot of practice. You
should go through all of the sequences and series in the exercises in 8.1-8.4 and determine whether
each converges or diverges and why; with some practice, each of them should take you 10-15 seconds.

Good luck on the final exam!


