REVIEW FOR MIDTERM I: MAT 310

- (1) Let V denote a vector space over the field F; let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ denote vectors in V; let \mathbf{a}, \mathbf{b} denote the two row vectors $(a_1, a_2, a_3), (b_1, b_2, b_3)$ in F^3 .
 - (a) Complete the definition: S is a linearly independent set if Solution: whenever $\sum_{i=1}^{3} x_i \mathbf{v}_i = \mathbf{0}$, for $x_i \in F$, then $x_i = 0$ for all

In parts (b)(c) below assume that S is a linearly independent set.

(b) Show (directly from the definition of linearly independent) that the two vectors $\mathbf{v} = \mathbf{v}_1 - \mathbf{v}_2 + 3\mathbf{v}_3$ and $\mathbf{w} = 2\mathbf{v}_1 + 3\mathbf{v}_2 - \mathbf{v}_3$ are linearly independent.

Solution: For any $x, y \in F$ we have $x\mathbf{v} + y\mathbf{w} = (x + 2y)\mathbf{v}_1 + (-x + 3y)\mathbf{v}_2 + (3x - y)\mathbf{v}_3$. Thus, if $x\mathbf{v} + y\mathbf{w} = \mathbf{0}$ then

$$x + 2y = 0, -x + 3y = 0, 3x - y = 0$$

(since S is assumed to be linearly independent). Solving these last three equations yields x = 0 = y.

(c) Show that the two vectors $\mathbf{v} = \sum_{i=1}^{3} a_i \mathbf{v_i}$ and $\mathbf{w} = \sum_{i=1}^{3} b_i \mathbf{v_i}$ are linearly independent in V iff the two vectors \mathbf{a} , \mathbf{b} are linearly independent in F^3 .

Soltution: If **v** and **w** are dependent then one is a scalar multiple of the other; e.g. $\mathbf{v} = x\mathbf{w}$ for $x \in F$. Thus $\mathbf{0} = \mathbf{v} - x\mathbf{w} = \sum_{i=1}^{3} (a_i - xb_i)\mathbf{v}_i$; which implies that $a_i - xb_i = 0$ for all i (since S is an independent set). Thus $a_i = xb_i$ for all i; so $\mathbf{a} = x\mathbf{b}$, showing that **a** and **b** are linearly dependent.

Similarly, if \mathbf{a} and \mathbf{b} are linearly dependent, you can reverse the argument just given to show that \mathbf{v} and \mathbf{w} are dependent.

- (2) Let X, Y denote vector subspaces of \mathbb{R}^4 .
 - (a) Set $S = X \cup Y$. Show that X + Y = V iff span(S)=V.

Solution: X+Y=V means that every vector $\mathbf{v} \in V$ can be written as $\mathbf{v}=\mathbf{x}+\mathbf{y}$ where $\mathbf{x}\in X$ and $\mathbf{y}\in Y$. Note that $\mathbf{x},\mathbf{y}\in S$; thus $\mathbf{x}+\mathbf{y}\in span(S)$. So every vector $\mathbf{v}\in V$ is in $\mathrm{span}(S)$. Note that the span of any subset of V is a vector subspace of V; thus $\mathrm{span}(S)\subset V$.

It remains to show that if span(S)=V then X+Y=V.

- (b) Suppose that $\mathbf{x}_1 = (2, 6, 2, 10), \mathbf{x}_2 = (2, 0, 0, 1)$ is a generating set for X and $\mathbf{y}_1 = (0, 5, 4, 8), \mathbf{y}_2 = (0, 1, -2, 1)$ is generating set for Y.
 - (i) Explain why the subset $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2\}$ is a generating set for X + Y.

Solution: If $\mathbf{v} \in X + Y$ then $\mathbf{v} = \mathbf{x} + \mathbf{y}$, where $\mathbf{x} \in X$ and $\mathbf{y} \in Y$. But $\mathbf{x} = \sum_{i=1}^{2} a_i \mathbf{x}_i$ and $\mathbf{y} = \sum_{i=1}^{2} b_i \mathbf{y}_i$. Thus $\mathbf{v} = \sum_{i=1}^{2} a_i \mathbf{x}_i + \sum_{i=1}^{2} b_i \mathbf{y}_i$, showing that \mathbf{v} is a linear combination of vectors in S.

(ii) Find a subset $\alpha \subset S$ which is a basis for X + Y; and compute dim(X+Y).

Solution: $\alpha = \{ \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2 \}; dim(X + Y) = 3.$

(iii) Extend the basis α for X + Y to a basis β for all of \mathbb{R}^4 .

Solution: Set $\beta = \alpha \cup \{(1, 0, 0, 0)\}.$

(c) Let α and β denote basis for X and Y respectively and set $\gamma = \alpha \cup \beta$. Show that V is the direct sum of X and Y iff γ is a basis for V. **Solution:** I will do half of this.

Set $\alpha = \{\mathbf{x}_1, ..., \mathbf{x}_m\}$ and $\beta = \{\mathbf{y}_1, ..., \mathbf{y}_n\}$, where m + n = 4. We will assume that γ is a basis for V and show that V is the direct sum of X and Y, i.e. we will show that V = X + Y and that $X \cap Y = \{0\}$.

Since γ is a basis for V we have that span $(\gamma) = V$. Thus any vector $\mathbf{v} \in V$ can be written as $\mathbf{v} = \sum_{i=1}^{m} a_i \mathbf{x}_i + \sum_{j=1}^{n} b_j \mathbf{y}_j$; so $\mathbf{v} = \mathbf{x} + \mathbf{y}$ where $\mathbf{x} = \sum_{i=1}^{m} a_i \mathbf{x}_i$ is in X and $\mathbf{y} = \sum_{j=1}^{n} b_j \mathbf{y}_j$ is in Y. This shows that $\mathbf{v} \in X + Y$; thus V = X + Y.

If $\mathbf{v} \in X \cap Y$ then $\mathbf{v} = \sum_{i=1}^{m} a_i \mathbf{x}_i$ and $\mathbf{v} = \sum_{j=1}^{n} b_j \mathbf{y}_j$; thus $\mathbf{0} = \mathbf{v} - \mathbf{v} = \sum_{i=1}^{m} a_i \mathbf{x}_i + \sum_{j=1}^{n} -b_j \mathbf{y}_j$, from which we conclude that $a_i = 0$ and $-b_j = 0$ for all i,j (because γ is basis for V and is therefore a linearly independent set). This shows that $\mathbf{v} = \mathbf{0}$; thus $X \cap Y = \mathbf{0}$.

- (3) Let $S = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ denote a finite subset of the vector space V.
 - (a) Suppose S is not an independent set. Then prove (from basics) that there is a subset $S' \subset S$ with $S' \neq S$, such that span(S') = span(S). **Solution:** There is a non-trivial linear combination $\sum_{i=1}^{n} a_i \mathbf{v}_i$ which equals 0; i.e. one of the coefficients $a_j \neq 0$. Thus we can solve the equation

$$\sum_{i=1}^{n} a_i \mathbf{v}_i = \mathbf{0}$$

for \mathbf{v}_i to get that

(1)
$$\mathbf{v}_j = \sum_{i \neq j} (-a_j)^{-1} a_i \mathbf{v}_i.$$

Set $S' = \{\mathbf{v}_1, ..., \mathbf{v}_{j-1}, \mathbf{v}_{j+1},, \mathbf{v}_n\}$. To see that $\operatorname{span}(S') = \operatorname{span}(S)$, let $\mathbf{v} \in \operatorname{span}(S)$. Then

(2)
$$\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{v}_i.$$

Combining equations (1) and (2) we get that

$$\mathbf{v} = \sum_{i \neq j} (x_i + x_j(-a_j)^{-1} a_i) \mathbf{v}_i,$$

which shows that $\mathbf{v} \in span(S')$.

- (b) Suppose S is an independent set such that $span(S) \neq V$. Then prove (from basics) that there is a vector v_{n+1} which is in V but is not in S, such that $S \cup \{\mathbf{v}_{n+1}\}$ is an independent set. **Solution:** Choose any vector $\mathbf{v}_{n+1} \in V$ which is not in span(S). If $S \cup \{\mathbf{v}_{n+1}\}$ is linearly dependent then we have $\sum_{i=1}^{n+1} a_i v_i = \mathbf{0}$, where
 - $a_j \neq 0$ for some j. If j=n+1, then we can solve this last equation for $v_{n+1} = \sum_{i=1}^{n} (-a_{n+1})^{-1} a_i \mathbf{v}_i$, showing that $v_{n+1} \in span(S)$ a contradiction. If $j \neq n+1$, then $a_{n+1} = 0$ and $\sum_{i=1}^{n} a_i \mathbf{v}_i = \mathbf{0}$ with $a_i \neq 0$ for some $1 \leq i \leq n$, showing that S is a linearly dependent set — which is again a contradiction.
- (4) Consider the subset $S = \{2x^3 + x^2, 2x^3 1, x^2 x, x + 1\}$ of the vector space $P_4(\mathbb{R})$.
 - (a) Find a basis α for span(S); compute dim(span(S)). **Solution:** $\alpha = \{2x^3 - 1, x^2 - x, x + 1\}$. dim(span(S)) = 3.
 - (b) Extend α to a basis β for all of $P_4(\mathbb{R})$. Solution: $\beta = S \cup \{x^3\}.$
- (5) Let V, W denote real vector spaces.
 - (a) Complete the following definition: A function $T:V \longrightarrow W$ is a linear transformation if
 - (b) Argue directly from the definition in part (a), prove that if $T:V\longrightarrow$ W is a linear transformation then $T(\sum_{i=1}^{3} a_i \mathbf{v}_i) = \sum_{i=1}^{3} a_i T(\mathbf{v}_i)$ is true for any real numbers a_i and any vectors $\mathbf{v}_i \in V$.
 - (c) If $T:V\longrightarrow W$ is a linear transformation, then give the definition for N(T) — the null space of T. Prove (from basics) that N(T) is a subspace of V.
- (6) Let $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^3$ denote a linear transformation such that T((1,0,0,0,0,0)) =(3,-1,0), T((1,1,1,1,1,1)) = (-2,1,3), T((0,0,1,1,1,1)) = (0,1,1). Compute dim(N(T)).

Solution: The vectors (3, -1, 0), (-2, 1, 3), (0, 1, 1) are all in R(T). These vectors are independent vectors in \mathbb{R}^3 ; thus $dim(R(T)) \geq 3$. But $dim(R(T)) \leq$ $dim(\mathbb{R}^3) = 3$. So dim(R(T)) = 3. Finally $dim(\mathbb{R}^6) = dim(N(T)) +$ dim(R(T)), i.e. 6 = dim(N(T)) + 3. Thus dim(N(T)) = 3.

(7) Is there a linear transformation $T:(Z_2)^5 \longrightarrow P_3(Z_2)$ which satisfies $T((1,1,0,0,1)) = x^3 + x$, $T((0,0,0,1,1)) = x^2 + 1$, $T((1,1,0,1,0)) = x^3 + 1$? (If yes, then describe it; if no then prove that there is no such linear map.) **Solution:** The answer is No.

Note that (1, 1, 0, 0, 1) + (0, 0, 0, 1, 1) = (1, 1, 0, 1, 0). Thus, if we assume that T is linear, then we have

$$(1) \qquad T((1,1,0,1,0)=T((1,1,0,0,1)+(0,0,0,1,1))=$$

 $T((1,1,0,0,1)) + T((0,0,0,1,1)) = (x^3 + x) + (x^2 + 1) = x^3 + x^2 + x + 1.$

But we also are given that

(2)
$$T((1,1,0,1,0)) = x^3 + 1.$$

Equations (1)(2) contradict one another.

(8) Let V denote the vector space of all continuous real valued functions defined on the real line. Are the functions t^2e^t , e^t , 2^t independent vectors in V?

Solution: Yes, they are idependent. If

$$(1) at^2e^t + be^t + c2^t = 0$$

then by applying the differential operator $(D-D^0)^3$ to equation (1) we get

(2)
$$(ln(2) - 1)^3 c2^t = 0,$$

which implies that

(3)
$$c = 0$$
.

By applying the differential operator $D - D^0$ to equation (1), and using equation (3), we get that

$$(4) 2ate^t = 0,$$

which implies that

(5)
$$a = 0$$
.

Now combining (1)(3)(5) we also get that b=0.

(9) Let C^{∞} denote the vector space (over the complex numbers) of infinitely differentiable complex valued functions defined on the real line. Find the general solution to the homogeneous differential equation

$$p(D)x = 0$$

where

$$p(t) = (t^2 + 1)^2(t^2 + 4t + 3).$$

Solution: The polynomial p(t) factors completely as $p(t) = (t+i)^2(t-i)^2(t+1)(t+3)$. Thus a basis for the solution space of p(D)X = 0 is $\{e^{-it}, te^{-it}, e^{it}, te^{it}, e^{-t}, e^{-3t}\}$; the general solution has the form

$$x(t) = a_1 e^{-it} + a_2 t e^{-it} + b_1 e^{it} + b_2 t e^{it} + c e^{-t} + d e^{-3t}.$$

(10) Set $\alpha = \{1, x, x^2\}$ and $\beta = \{x^2 + x, x - 1, x^2 + x + 1\}$. Note that both α and β are basis for $P_2(\mathbb{R})$. Let γ denote a third basis for $P_2(\mathbb{R})$ such that the 3×3 matrix

is the "change of coordinate matrix" that changes the γ -coordinates of a vector to the β -coordinates.

(a) Compute $[x]_{\beta}$. Solution: $[x]_{\beta}$ is the column vector

-1 1 1

(b) What are the vectors in γ ?

Solution: $\gamma = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ where

$$\mathbf{v}_1 = (x^2 + x) + 2(x - 1)$$

$$\mathbf{v}_2 = (x^2 + x) + (x^2 + x + 1)$$

$$\mathbf{v}_3 = 2(x^2 + x) + (x - 1) + (x^2 + x + 1)$$

(c) Compute the change of coordinate matrix that changes γ -coordinates to α -coordinates.

Solution: This is the matrix $[id]^{\alpha}_{\gamma}$. Note that

$$(1) \qquad [id]^{\alpha}_{\gamma} = [id]^{\alpha}_{\beta} [id]^{\beta}_{\gamma}$$

and $[id]^{\alpha}_{\beta}$ is the 3 × 3-matrix

$$\begin{array}{ccccc}
0 & -1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}$$

Now compute $[id]^{\alpha}_{\gamma}$ by multiplying the above two matrices.

- (11) Consider the linear transformation $T: P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ defined by T(p(x)) = 3p''(x) 2p'(x) + p(x).
 - (a) Is T invertible (why or why not)?

Solution: $T(1) = 1, T(x) = x - 2, T(x^2) = x^2 - 4x + 6$. Thus $S = \{1, x-2, x^2-4x+6\}$ is a subset R(T). Note that S is an independent set, so $dim(R(T)) \geq 3$. But $dim(R(T)) \leq dim(P_2(\mathbb{R})) = 3$; so $dim(R(T)) = 3 = dim(P_2(\mathbb{R}))$ and $R(T) = P_2(\mathbb{R})$. So $T : P_2(\mathbb{R}) \longrightarrow P_2(\mathbb{R})$ is an onto linear transformation, which implies that it is invertible (why?).

(b) Compute $[T]_{\alpha}$ and $[T]_{\beta}^{\alpha}$, where α and β are as in problem (10) above. **Solution:** The computations for $T(1), T(x), T(x^2)$ givn in part (a) above, show that $[T]_{\alpha}$ is equal to the matrix

$$\begin{array}{cccc}
1 & -2 & 6 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}$$

To get $[T]^{\alpha}_{\beta}$, note that

$$[T]^{\alpha}_{\beta} = [T]_{\alpha}[id]^{\alpha}_{\beta}.$$

So to get the $[T]^{\alpha}_{\beta}$ just multiply the proceeding matrix with the matrix $[id]^{\alpha}_{\beta}$ which was computed in (10)(c) above.

- (12) Determine whether each of the following statements is true or false.
 - (a) If a linear transformation $T: \mathbb{R}^3 \longrightarrow P_3(\mathbb{R})$ is one-one then it is an isomorphism.
 - (b) Every matrix $A \in M_{5\times 5}(\mathbb{C})$ is the product of a finite number of elementary matrices. (\mathbb{C} =complex numbers.)
 - (c) If dim(V)=dim(W) for two vectors spaces V,W over the same field F, then V must be isomorphic to W.
 - (d) For any $A, B \in M_{2\times 2}(F)$ we must have AB=BA. (F=field.)
 - (e) For any $A \in M_{n \times n}(F)$ if A is invertible then A^k is also invertible for each positive integer k. (F=field.)
 - (f) Let $T: V \longrightarrow V$ denote any linear operator on the finite dimensional vectors space V. Then $rank(T) \leq rank(T^2)$.
 - (g) $A, B \in M_{n \times n}(\mathbb{R})$ are similar matrices iff rank(A)=rank(B).
 - (h) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is an independent set in the vector space V then $\dim(V) \leq 4$.
 - (i) The matrix $A \in M_{n \times n}(F)$ is invertible iff rank(A)=n.
- (13) Let A denote the following 3×3 matrix over the real numbers:

- (a) Write A as a finite product of elementary matrices.
- (b) Compute A^{-1} .

(14)

(a) Let A denote the 4×4 matrix with real number entries

and let B denote the 4×4 matrix with real number entries

Is A similar to B over the real numbers? (**Hint:** What are the ranks of A and B?)

(b) Is the the 3×3 matrix

$$\begin{array}{cccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}$$

similar (over the real numbers) to an elementary matrix?

(c) Suppose that the matrices $A, B \in M_{n \times n}(F)$ are similar over the field F. Then show that the matrices A^2, B^2 are also similar over F.