
REVIEW FOR MIDTERM I: MAT 310

(1) Let V denote a vector space over the field F ; let S = {v1,v2,v3} denote
vectors in V ; let a,b denote the two row vectors (a1, a2, a3), (b1, b2, b3) in
F 3.

(a) Complete the definition: S is a linearly independent set if .....

Solution: whenever
∑3

i=1 xivi = 0, for xi ∈ F , then xi = 0 for all

i.

In parts (b)(c) below assume that S is a linearly independent set.
(b) Show (directly from the definition of linearly independent) that the

two vectors v = v1 − v2 + 3v3 and w = 2v1 + 3v2 − v3 are linearly
independent.
Solution: For any x, y ∈ F we have xv + yw = (x+ 2y)v1 +
(−x+ 3y)v2 + (3x− y)v3. Thus, if xv + yw = 0 then

x+ 2y = 0,−x+ 3y = 0, 3x− y = 0

(since S is assumed to be linearly independent). Solving these last
three equations yields x = 0 = y.

(c) Show that the two vectors v =
∑3

i=1 aivi and w =
∑3

i=1 bivi are
linearly independent in V iff the two vectors a,b are linearly inde-
pendent in F 3.
Soltution: If v and w are dependent then one is a scalar multi-
ple of the other; e.g. v = xw for x ∈ F . Thus 0 = v − xw =∑3

i=1(ai − xbi)vi; which implies that ai − xbi = 0 for all i (since S

is an independent set). Thus ai = xbi for all i; so a = xb, showing
that a and b are linearly dependent.

Similarly, if a and b are linearly dependent, you can reverse the
argument just given to show that v and w are dependent.

(2) Let X,Y denote vector subspaces of R4.

(a) Set S = X ∪ Y . Show that X + Y = V iff span(S)=V .
Solution: X+Y = V means that every vector v ∈ V can be written
as v = x + y where x ∈ X and y ∈ Y . Note that x,y ∈ S; thus
x+y ∈ span(S). So every vector v ∈ V is in span(S). Note that the
span of any subset of V is a vector subspace of V ; thus span(S) ⊂ V .

It remains to show that if span(S)=V then X + Y = V .
(b) Suppose that x1 = (2, 6, 2, 10),x2 = (2, 0, 0, 1) is a generating set for

X and y1 = (0, 5, 4, 8),y2 = (0, 1,−2, 1) is generating set for Y .
(i) Explain why the subset S = {x1,x2,y1,y2} is a generating set

for X + Y .
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Solution: If v ∈ X+Y then v = x+y, where x ∈ X and y ∈ Y . But
x =

∑2

i=1 aixi and y =
∑2

i=1 biyi. Thus v =
∑2

i=1 aixi+
∑2

i=1 biyi,
showing that v is a linear combination of vectors in S.

(ii) Find a subset α ⊂ S which is a basis for X + Y ; and compute
dim(X + Y ).
Solution: α = {x2,y1,y2}; dim(X + Y ) = 3.

(iii) Extend the basis α for X + Y to a basis β for all of R4.
Solution: Set β = α ∪ {(1, 0, 0, 0)}.

(c) Let α and β denote basis for X and Y respectively and set γ = α∪β.
Show that V is the direct sum of X and Y iff γ is a basis for V .
Solution: I will do half of this.

Set α = {x1, ...,xm} and β = {y1, ...,yn}, where m + n = 4. We
will assume that γ is a basis for V and show that V is the direct sum
of X and Y , i.e. we will show that V = X+Y and that X∩Y = {0}.

Since γ is a basis for V we have that span(γ) = V . Thus any vector
v ∈ V can be written as v =

∑m
i=1 aixi +

∑n
j=1 bjyj ; so v = x + y

where x =
∑m

i=1 aixi is in X and y =
∑n

j=1 bjyj is in Y. This shows
that v ∈ X + Y ; thus V = X + Y .

If v ∈ X ∩ Y then v =
∑m

i=1 aixi and v =
∑n

j=1 bjyj ; thus

0 = v− v =
∑m

i=1 aixi +
∑n

j=1−bjyj , from which we conclude that

ai = 0 and −bj = 0 for all i,j (because γ is basis for V and is therefore
a linearly independent set). This shows that v = 0; thus X ∩Y = 0.

(3) Let S = {v1, ...,vn} denote a finite subset of the vector space V .

(a) Suppose S is not an independent set. Then prove (from basics) that
there is a subset S′ ⊂ S with S′ 6= S, such that span(S′) = span(S).
Solution: There is a non-trivial linear combination

∑n
i=1 aivi which

equals 0; i.e. one of the coefficients aj 6= 0. Thus we can solve the
equation

n∑

i=1

aivi = 0

for vj to get that

(1) vj =
∑

i 6=j

(−aj)
−1aivi.

Set S′ = {v1, ...,vj−1,vj+1, ....,vn}.
To see that span(S′)=span(S), let v ∈ span(S). Then

(2) v =

n∑

i=1

xivi.

Combining equations (1) and (2) we get that

v =
∑

i 6=j

(xi + xj(−aj)
−1ai)vi,
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which shows that v ∈ span(S′).
(b) Suppose S is an independent set such that span(S) 6= V . Then prove

(from basics) that there is a vector vn+1 which is in V but is not in
S, such that S ∪ {vn+1} is an independent set.
Solution: Choose any vector vn+1 ∈ V which is not in span(S). If

S∪{vn+1} is linearly dependent then we have
∑n+1

i=1 aivi = 0, where
aj 6= 0 for some j. If j=n+1, then we can solve this last equation
for vn+1 =

∑n
i=1(−an+1)

−1aivi, showing that vn+1 ∈ span(S) — a
contradiction. If j 6= n + 1, then an+1 = 0 and

∑n
i=1 aivi = 0 with

ai 6= 0 for some 1 ≤ i ≤ n, showing that S is a linearly dependent
set — which is again a contradiction.

(4) Consider the subset S = {2x3 + x2, 2x3 − 1, x2 − x, x+ 1} of the vector
space P4(R).

(a) Find a basis α for span(S); compute dim(span(S)).
Solution: α = {2x3 − 1, x2 − x, x+ 1}. dim(span(S)) = 3.

(b) Extend α to a basis β for all of P4(R).
Solution: β = S ∪ {x3}.

(5) Let V,W denote real vector spaces.

(a) Complete the following definition: A function T : V −→ W is a

linear transformation if .....

(b) Argue directly from the definition in part (a), prove that if T : V −→

W is a linear transformation then T (
∑3

i=1 aivi) =
∑3

i=1 aiT (vi) is
true for any real numbers ai and any vectors vi ∈ V .

(c) If T : V −→ W is a linear transformation, then give the definition
for N(T ) — the null space of T . Prove (from basics) that N(T) is a
subspace of V.

(6) Let T : R6 −→ R
3 denote a linear transformation such that T ((1, 0, 0, 0, 0, 0)) =

(3,−1, 0), T ((1, 1, 1, 1, 1, 1)) = (−2, 1, 3), T ((0, 0, 1, 1, 1, 1) = (0, 1, 1). Com-
pute dim(N(T )).
Solution: The vectors (3,−1, 0), (−2, 1, 3), (0, 1, 1) are all in R(T ). These
vectors are independent vectors in R

3; thus dim(R(T )) ≥ 3. But dim(R(T )) ≤
dim(R3) = 3. So dim(R(T )) = 3. Finally dim(R6) = dim(N(T )) +
dim(R(T )), i.e. 6 = dim(N(T )) + 3. Thus dim(N(T )) = 3.

(7) Is there a linear transformation T : (Z2)
5 −→ P3(Z2) which satisfies

T ((1, 1, 0, 0, 1)) = x3+x, T ((0, 0, 0, 1, 1)) = x2+1, T ((1, 1, 0, 1, 0)) = x3+1?
(If yes, then describe it; if no then prove that there is no such linear map.)
Solution: The answer is No.
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Note that (1, 1, 0, 0, 1) + (0, 0, 0, 1, 1) = (1, 1, 0, 1, 0). Thus, if we assume
that T is linear, then we have

(1) T ((1, 1, 0, 1, 0) = T ((1, 1, 0, 0, 1) + (0, 0, 0, 1, 1)) =

T ((1, 1, 0, 0, 1)) + T ((0, 0, 0, 1, 1)) = (x3 + x) + (x2 + 1) = x3 + x2 + x+ 1.

But we also are given that

(2) T ((1, 1, 0, 1, 0)) = x3 + 1.

Equations (1)(2) contradict one another.

(8) Let V denote the vector space of all continuous real valued functions
defined on the real line. Are the functions t2et, et, 2t independent vectors in
V ?
Solution: Yes, they are idependent. If

(1) at2et + bet + c2t = 0

then by applying the differential operator (D−D0)3 to equation (1) we get

(2) (ln(2)− 1)3c2t = 0,

which implies that
(3) c = 0.

By applying the differential operator D − D0 to equation (1), and using
equation (3), we get that

(4) 2atet = 0,

which implies that
(5) a = 0.

Now combining (1)(3)(5) we also get that b = 0.

(9) Let C∞ denote the vector space (over the complex numbers) of infin-
itely differentiable complex valued functions defined on the real line. Find
the general solution to the homogeneous differential equation

p(D)x = 0

where
p(t) = (t2 + 1)2(t2 + 4t+ 3).

Solution: The polynomial p(t) factors completely as p(t) = (t + i)2(t −
i)2(t + 1)(t + 3). Thus a basis for the solution space of p(D)X = 0 is
{e−it, te−it, eit, teit, e−t, e−3t}; the general solution has the form

x(t) = a1e
−it + a2te

−it + b1e
it + b2te

it + ce−t + de−3t.

(10) Set α = {1, x, x2} and β = {x2 + x, x− 1, x2 + x+ 1}. Note that both
α and β are basis for P2(R). Let γ denote a third basis for P2(R) such that
the 3× 3 matrix
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1 1 2

2 0 1

0 1 1

is the “change of coordinate matrix” that changes the γ-coordinates of a
vector to the β-coordinates.

(a) Compute [x]β. Solution: [x]β is the column vector

−1

1

1

(b) What are the vectors in γ?
Solution: γ = {v1,v2,v3} where

v1 = (x2 + x) + 2(x− 1)

v2 = (x2 + x) + (x2 + x+ 1)

v3 = 2(x2 + x) + (x− 1) + (x2 + x+ 1)

(c) Compute the change of coordinate matrix that changes γ-coordinates
to α-coordinates.
Solution: This is the matrix [id]αγ . Note that

(1) [id]αγ = [id]αβ [id]
β
γ

and [id]αβ is the 3× 3-matrix

0 − 1 1

1 1 1

1 0 1

Now compute [id]αγ by multiplying the above two matrices.

(11) Consider the linear transformation T : P2(R) −→ P2(R) defined by
T (p(x)) = 3p′′(x)− 2p′(x) + p(x).

(a) Is T invertible (why or why not)?
Solution: T (1) = 1, T (x) = x − 2, T (x2) = x2 − 4x + 6. Thus
S = {1, x−2, x2−4x+6} is a subset R(T ). Note that S is an indepen-
dent set, so dim(R(T )) ≥ 3. But dim(R(T )) ≤ dim(P2(R)) = 3; so
dim(R(T )) = 3 = dim(P2(R)) and R(T ) = P2(R). So T : P2(R) −→
P2(R) is an onto linear transformation, which implies that it is in-
vertible (why?).
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(b) Compute [T ]α and [T ]αβ , where α and β are as in problem (10) above.

Solution: The computations for T (1), T (x), T (x2) givn in part (a)
above, show that [T ]α is equal to the matrix

1 − 2 6

0 1 − 4

0 0 1

To get [T ]αβ , note that

[T ]αβ = [T ]α[id]
α
β .

So to get the [T ]αβ just multiply the proceeding matrix with the

matrix [id]αβ which was computed in (10)(c) above.

(12) Determine whether each of the following statements is true or false.

(a) If a linear transformation T : R3 −→ P3(R) is one-one then it is an
isomorphism.

(b) Every matrix A ∈ M5×5(C) is the product of a finite number of
elementary matrices.(C=complex numbers.)

(c) If dim(V)=dim(W) for two vectors spaces V,W over the same field
F, then V must be isomorphic to W.

(d) For any A,B ∈ M2×2(F ) we must have AB=BA. (F=field.)
(e) For any A ∈ Mn×n(F ) if A is invertible then Ak is also invertible for

each positive integer k. (F=field.)
(f) Let T : V −→ V denote any linear operator on the finite dimensional

vectors space V . Then rank(T ) ≤ rank(T 2).
(g) A,B ∈ Mn×n(R) are similar matrices iff rank(A)=rank(B).
(h) If {v1,v2,v3,v4} is an independent set in the vector space V then

dim(V)≤ 4.
(i) The matrix A ∈ Mn×n(F ) is invertible iff rank(A)=n.

(13) Let A denote the following 3× 3 matrix over the real numbers:

1 2 3

3 1 2

2 3 1

(a) Write A as a finite product of elementary matrices.
(b) Compute A−1.
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(14)

(a) Let A denote the 4× 4 matrix with real number entries

1 2 2 1

−1 2 3 2

0 1 1 0

1 0 1 0

and let B denote the 4× 4 matrix with real number entries

1 1 1 1

2 0 1 0

6 0 2 3

3 − 1 0 2

Is A similar to B over the real numbers? (Hint: What are the ranks
of A and B?)

(b) Is the the 3× 3 matrix

2 0 0

0 2 0

0 0 2

similar (over the real numbers) to an elementary matrix?
(c) Suppose that the matrices A,B ∈ Mn×n(F ) are similar over the field

F . Then show that the matrices A2, B2 are also similar over F .


