MAT 310-F10: REVIEW FOR FINAL EXAM

(1) Consider the the 3×6 matrix over the real numbers $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}\right]$, where \mathbf{a}_{i} denotes the i'th column. Let B denote the 3×6 matrix (over the real numbers)

0	1	2	0	7	6
1	0	3	1	0	1
1	0	2	0	1	1

(a) Suppose $\mathbf{a}_{2}=(1,2,2)^{t}, \mathbf{a}_{3}=(-2,0,1)^{t}, \mathbf{a}_{4}=(0,4,5)^{t}, \mathbf{a}_{5}=(0,1,1)^{t}$. Compute the ranks of A and B. Explain why B can not be obtained from A by a finite number of elementary row operations.
(b) Suppose that $\mathbf{a}_{2}=(1,1,1)^{t}, \mathbf{a}_{4}=(1,0,5)^{t}, \mathbf{a}_{6}=(1,2,3)^{t}$; also suppose that B is obtained from A by a finite number of elementary row operations. Then compute the coordinates of \mathbf{a}_{3}.
Hint: read the proof of Theorem 3.16 on page 190.
(2) Consider the following 3×3 matrix A (over the real numbers)

$$
\begin{array}{lll}
7 & -4 & 0 \\
8 & -5 & 0 \\
6 & -6 & 3
\end{array}
$$

(a) Compute the determinant for $\mathrm{A}, \operatorname{det}(\mathrm{A})=$?
(b) Compute the characteristic polynomial of $\mathrm{A}, p_{A}(t)=$?
(c) Compute eigenvalues for A ; for each eigenvalue λ compute its mulitplicity and find a basis for the eigenspace E_{λ}.
(d) Diagonalize A; that is write $Q^{-1} A Q=D$, where D is a diagonal matrix.
(e) Compute $A^{99}=$? (Hint: If $A=Q D Q^{-1}$ then $A^{n}=Q D^{n} Q^{-1}$ for any positive integer n.)
(3) Define a linear transformation $T: P_{3}(\mathbb{R}) \longrightarrow P_{3}(\mathbb{R})$ by $T(f(x))=$ $x f^{\prime}(x)+f^{\prime \prime}(x)-f(2)$ for each polynomial $f(x) \in P_{3}(\mathbb{R})$. ;
(a) Compute $\operatorname{det}(\mathrm{T})$ and the characteristic polynomial $P_{T}(t)$ for T.
(b) Find all the eigenvalues for T; for each eigenvalue λ compute its multiplicity and find a basis for its eignspace E_{λ}.
(c) Find a basis for $P_{3}(\mathbb{R})$ consisting of eigenvectors for T.
(d) Compute $T^{45}\left(x^{3}\right)=$? (Hint: express the polynomial x^{3} as a linear combination of the basis elements given in part (c) above.)
(4) A polynomial $f(x) \in P(F)$ is called irreducible over the field F if whenever $f(x)=g(x) h(x)$ for $g(x), h(x) \in P(F)$ then either $g(x)=\alpha$ or $h(x)=\alpha$ for some $\alpha \in F$.

Let V denote finite dimensional vector space over the field F and let $T: V \longrightarrow V$ denote a linear transformation. Show that if the characteristic polynomial $P_{T}(t)$ for T is irreducible then V is a T-cyclic subspace (of itself) generated by some $\mathbf{v} \in V$. (Hint: T-cyclic subspaces are defined on page 313 in section 5.4; see also Theorem 5.21 on page 314.)
(5) Let F denote a field. Given $A \in M_{3 \times 3}(F)$, define a linear operator $T: M_{3 \times 3}(F) \longrightarrow M_{3 \times 3}(F)$ by $T(B)=A B$ for any $B \in M_{3 \times 3}(F)$. Explain why any T-cyclic subspace $W \subset M_{3 \times 3}(F)$ satisfies $\operatorname{dim}(W) \leq 3$. (Hint: Cayley-Hamilton Theorem for matrices.)
(6) Let $T: V \longrightarrow V$ denote a linear operator on the finite dimensional vector space V over the field F ; and let $i d_{V}: V \longrightarrow V$ denote the identity map. For some $\mathbf{v} \in V, \lambda \in F$ and m a positive integer suppose that $\left(T-\lambda i d_{V}\right)^{m-1}(\mathbf{v}) \neq \mathbf{0}$ but $\left(T-\lambda i d_{V}\right)^{m}(\mathbf{v})=\mathbf{0}$.
(a) Show that λ is an eigenvalue for T.
(b) Show that $\beta=\left\{\left(T-\lambda i d_{V}\right)^{i}(\mathbf{v}) \mid i=0,1,2, \ldots, m-1\right\}$ is an independent subset of V.
(c) Set $W=\operatorname{span}(\beta)$. Explain why the subspace W is T-invariant.
(d) Explain why $(t-\lambda)^{m}$ is a factor of the characteristic polynomial of T; i.e. $p_{T}(t)=(t-\lambda)^{m} g(t)$ for some $g(t) \in P(F)$. (Hint: What is the characteristic polynomial $p_{T_{W}}(t)$ and why is it a factor of $p_{T}(t)$?)
(7) Let $T: V \longrightarrow V$ denote a linear operator on the real vector space V. Suppose that V is the direct sum $U \oplus W$ of T-invariant subspaces $U, W \subset V$. If λ is an eigenvalue for T, then show that either $\operatorname{dim}\left(E_{\lambda} \cap U\right) \geq 1$ or $\operatorname{dim}\left(E_{\lambda} \cap W\right) \geq 1$.
(8) There will be a problem on the exam similiar to problem (2) or problem (3) at the end of section 7.1.

