MAT 310-F10: REVIEW FOR FINAL EXAM

(1) Consider the the 3×6 matrix over the real numbers $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}, \mathbf{a}_{6}\right]$, where \mathbf{a}_{i} denotes the i'th column. Let B denote the 3×6 matrix (over the real numbers)

0	1	2	0	7	6
1	0	3	1	0	1
1	0	2	0	1	1

(a) Suppose $\mathbf{a}_{2}=(1,2,2)^{t}, \mathbf{a}_{3}=(-2,0,1)^{t}, \mathbf{a}_{4}=(0,4,5)^{t}, \mathbf{a}_{5}=(0,1,1)^{t}$. Compute the ranks of A and B. Explain why B can not be obtained from A by a finite number of elementary row operations.
Solution: The first 3 columns of B are independent, so its column space has dimension 3, thus $\operatorname{rank}(B)=3$. The second, third and fifth column of A are independent, so its column space has dimension 3, thus $\operatorname{rank}(\mathrm{A})=3$.

If B could be obtained from A by elementary row operations, then there would exist an invertible, 3×3-matrix C such that $C \mathbf{b}_{i}=\mathbf{a}_{i}$ holds for all $1 \leq i \leq 6$ ($\mathbf{b}_{\mathbf{i}}$ denotes the i^{\prime} th column of B). Since the $\left\{\mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right\}$ are idependent, and left multiplication by an invertible matrix C sends an independent set to an independent set, it would follow that $\left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ must be independent - which it is not.
(b) Suppose that $\mathbf{a}_{2}=(1,1,1)^{t}, \mathbf{a}_{4}=(1,0,5)^{t}, \mathbf{a}_{6}=(1,2,3)^{t}$; also suppose that B is obtained from A by a finite number of elementary row operations. Then compute the coordinates of \mathbf{a}_{3}.
Solutions: We have that $\mathbf{a}_{i}=C \mathbf{b}_{i}$ holds for all $1 \leq i \leq 6$ for some invertible matrix C. Note that $\mathbf{b}_{3}=-10 \mathbf{b}_{2}+\mathbf{b}_{4}+2 \mathbf{b}_{6}$. Thus $\mathbf{a}_{3}=$ $C \mathbf{b}_{3}=-10 C \mathbf{b}_{2}+C \mathbf{b}_{4}+2 C \mathbf{b}_{6}=-10 \mathbf{a}_{2}+\mathbf{a}_{4}+2 \mathbf{a}_{6}=(-7,-6,1)^{t}$.
Hint: read the proof of Theorem 3.16 on page 190.
(2) Consider the following 3×3 matrix A (over the real numbers)

$$
\begin{array}{ccc}
7 & -4 & 0 \\
8 & -5 & 0 \\
6 & -6 & 3
\end{array}
$$

(a) Compute the determinant for $\mathrm{A}, \operatorname{det}(\mathrm{A})=$?

Solution: $\operatorname{det}(A)=-9$
(b) Compute the characteristic polynomial of $\mathrm{A}, p_{A}(t)=$?

Solution: $p_{A}(t)=-t^{3}+5 t^{2}-3 t-9$
(c) Compute eigenvalues for A ; for each eigenvalue λ compute its mulitplicity and find a basis for the eigenspace E_{λ}.
Solution: $p_{A}(t)=-(t+1)(t-3)^{2}$ so the eigenvalues are $-1,3$ having multiplicity 1,2 respectively. A basis for E_{-1} is $\left\{(2,4,3)^{t}\right\}$. A basis for E_{3} is $\left\{(1,1,0)^{t},(0,0,1)^{t}\right\}$.
(d) Diagonalize A; that is write $Q^{-1} A Q=D$, where D is a diagonal matrix.
Solution: D is the matrix

-1	0	0
0	3	0
0	0	3

Q is the matrix

2	1	0
4	1	0
3	0	1

(e) Compute $A^{99}=$? (Hint: If $A=Q D Q^{-1}$ then $A^{n}=Q D^{n} Q^{-1}$ for any positive integer n.)
Solution: Note that D^{n} is the matrix

$(-1)^{n}$	0	0
0	3^{n}	0
0	0	3^{n}

So A^{n} is the product of the 3 matrices $Q D^{n} Q^{-1}$.
(3) Define a linear transformation $T: P_{3}(\mathbb{R}) \longrightarrow P_{3}(\mathbb{R})$ by $T(f(x))=$ $x f^{\prime}(x)+f^{\prime \prime}(x)-f(2)$ for each polynomial $f(x) \in P_{3}(\mathbb{R})$;
(a) Compute $\operatorname{det}(\mathrm{T})$ and the characteristic polynomial $p_{T}(t)$ for T.

Solution: If α denotes the standard basis $\left\{1, x, x^{2}, x^{3}\right\}$ for $P_{3}(\mathbb{R})$ then $[T]_{\alpha}$ is the matrix

-1	-2	-2	-8
0	1	0	6
0	0	2	0
0	0	0	3

Since this is an upper triangular matrix the determinant is the product of the diagonal elements

$$
\operatorname{det}\left([T]_{\alpha}\right)=(-1)(1)(2)(3)=-6 .
$$

Likewise $p_{[T]_{\alpha}}(t)=\operatorname{det}\left([T]_{\alpha}-t I_{4}\right)=(-1-t)(1-t)(2-t)(3-t)$. Finally note that $\operatorname{det}(T)=\operatorname{det}\left([T]_{\alpha}\right)$ and $p_{T}(t)=p_{[T]_{\alpha}}(t)$.
(b) Find all the eigenvalues for T; for each eigenvalue λ compute its multiplicity and find a basis for its eignspace E_{λ}.
Solution: The eigenvalues are $-1,1,2,3$. Each eigenvalue has multiplicity one.

A basis for E_{-1} is $\{1\}$; a basis for E_{1} is $\{x-1\}$; a basis for E_{2} is $\left\{x^{2}-\frac{2}{3}\right\}$; a basis for E_{3} is $\left\{x^{3}+3 x-\frac{14}{4}\right\}$
(c) Find a basis for $P_{3}(\mathbb{R})$ consisting of eigenvectors for T.

Solution: The four vectors given in part (b) are such a basis.
(d) Compute $T^{45}\left(x^{3}\right)=$? (Hint: express the polynomial x^{3} as a linear combination of the basis elements given in part (c) above.)
Solution: Note that

$$
x^{3}=\left(x^{3}+3 x-\frac{14}{4}\right)-3(x-1)+\frac{1}{2}(1)
$$

. Thus

$$
\begin{aligned}
T^{45}\left(x^{3}\right)= & T^{45}\left(x^{3}+3 x-\frac{14}{4}\right)-3 T^{45}(x-1)+\frac{1}{2} T^{45}(1)= \\
& 3^{45}\left(x^{3}+3 x-\frac{14}{4}\right)-3(x-1)-\frac{1}{2} .
\end{aligned}
$$

(4) A polynomial $f(x) \in P(F)$ is called irreducible over the field F if whenever $f(x)=g(x) h(x)$ for $g(x), h(x) \in P(F)$ then either $g(x)=\alpha$ or $h(x)=\alpha$ for some $\alpha \in F$.

Let V denote a finite dimensional vector space over the field F and let $T: V \longrightarrow V$ denote a linear transformation. Show that if the characteristic polynomial $P_{T}(t)$ for T is irreducible then V is a T-cyclic subspace (of itself) generated by some $\mathbf{v} \in V$. (Hint: T-cyclic subspaces are defined on page 313 in section 5.4 ; see also Theorem 5.21 on page 314.)
Solution: Choose any non-zero vector $\mathbf{v} \in V$, and let W denote the T-cyclic subspace of V generated by \mathbf{v}. Then W is also a T-invariant subspace of V (see section 5.4 of text), so Theorem 5.21 states that the characteristic polynomial $p_{T_{W}}(t)$ for T_{W} is a factor of the characteristic polynomial $p_{T}(t)$ for T . Since $p_{T}(t)$ is irreduciable we conclude that $p_{T_{W}}(t)=\alpha p_{T}(t)$ for some scalar α; hence $\operatorname{deg}\left(p_{T_{W}}(t)\right)=\operatorname{deg}\left(p_{T}(t)\right)$, which implies that $\operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$, which implies that $\mathrm{W}=\mathrm{V}$.
(5) Let F denote a field. Given $A \in M_{3 \times 3}(F)$, define a linear operator $T: M_{3 \times 3}(F) \longrightarrow M_{3 \times 3}(F)$ by $T(B)=A B$ for any $B \in M_{3 \times 3}(F)$. Explain why any T-cyclic subspace $W \subset M_{3 \times 3}(F)$ satisfies $\operatorname{dim}(W) \leq 3$. (Hint: Cayley-Hamilton Theorem for matrices.)
Solution: Any T-cyclic subspace W has the form $\operatorname{span}\left(B, A B, A^{2} B, A^{3} B, \ldots, A^{n} B, \ldots\right.$) for some $B \in M_{3 \times 3}(F)$. It will suffice to show that

$$
\text { (i) } \quad W=\operatorname{span}\left(B, A B, A^{2} B\right) \text {. }
$$

Let $-t^{3}+a t^{2}+b t+c$ denote the characteristic polynmial for the matrix A ; then, by the matrix form of the Cayley-Hamilton theorem, we have

$$
\text { (ii) } \quad-A^{3}+a A^{2}+b A+c I_{3}=0 \text {. }
$$

Deduce from (ii) that

$$
\text { (iii) } \quad A^{n} B=a A^{n-1} B+b A^{n-2} B+c A^{n-3} B
$$

for all $n \geq 3$. It follows from (iii) that
(iv) $\operatorname{span}\left(B, A B, A^{2} B, \ldots, A^{n-1} B\right)=\operatorname{span}\left(B, A B, A^{2}, \ldots, A^{n} B\right)$
for all $n \geq 3$. Thus by induction over n in (iv) we get that
(v) $\operatorname{span}\left(B, A B, A^{2} B\right)=\operatorname{span}\left(B, A B, A^{2}, \ldots, A^{n} B\right)$
for all $n \geq 3$.
(6) Let $T: V \longrightarrow V$ denote a linear operator on the finite dimensional vector space V over the field F ; and let $i d_{V}: V \longrightarrow V$ denote the identity map. For some $\mathbf{v} \in V, \lambda \in F$ and m a positive integer suppose that $\left(T-\lambda i d_{V}\right)^{m-1}(\mathbf{v}) \neq \mathbf{0}$ but $\left(T-\lambda i d_{V}\right)^{m}(\mathbf{v})=\mathbf{0}$.
(a) Show that λ is an eigenvalue for T.

Solution: Set $\mathbf{w}=\left(T-\lambda i d_{V}\right)^{m-1}(\mathbf{v})$; then $\mathbf{w} \neq \mathbf{0}$ and $T(\mathbf{w})=\lambda \mathbf{w}$. Thus \mathbf{w} is an eigenvector for T associated to the eigenvalue λ.
(b) Show that $\beta=\left\{\left(T-\lambda i d_{V}\right)^{i}(\mathbf{v}) \mid i=0,1,2, \ldots, m-1\right\}$ is an independent subset of V.
Solution: Suppose that

$$
\begin{equation*}
\sum_{i=j}^{m-1} a_{i}\left(T-\lambda i d_{V}\right)^{i}(\mathbf{v})=\mathbf{0} \tag{i}
\end{equation*}
$$

is a given linear relation with $a_{j} \neq 0$. By applying $\left(T-\lambda i d_{V}\right)^{m-1-j}$ to both sides of (i) we get
(ii) $\quad a_{j}\left(T-\lambda i d_{V}\right)^{m-1}(\mathbf{v})=\mathbf{0}$.

Since $\left(T-\lambda i d_{V}\right)^{m-1}(\mathbf{v}) \neq \mathbf{0}$ it follows from (ii) that $a_{j}=0$; this is a contradiction.
(c) Set $W=\operatorname{span}(\beta)$. Explain why the subspace W is T-invariant.

Solution: Set $\mathbf{w}_{i}=\left(T-\lambda i d_{V}\right)^{i-1}(\mathbf{v})$. Note that
(i) $T\left(\mathbf{w}_{i}\right)=\mathbf{w}_{i+1}+\lambda \mathbf{w}_{i}$.

So T maps the spanning set for W into W ; thus $T(W) \subset W$.
(d) Explain why $(t-\lambda)^{m}$ is a factor of the characteristic polynomial of T; i.e. $p_{T}(t)=(t-\lambda)^{m} g(t)$ for some $g(t) \in P(F)$. (Hint: What is the characteristic polynomial $p_{T_{W}}(t)$ and why is it a factor of $p_{T}(t)$?) Solution: W is a T invariant subspace of V (part (c)); so $p_{T_{V}}(t)$ divides $p_{T}(t)$ (theorem 5.21). β is a basis for W (part (b)); and the matrix $[T]_{\beta}$ is an $m \times m$ Jordan Block matrix having λ down the diagonal (see (i) in part (c)). Thus $p_{T_{V}}(t)=(-1)^{m}(t-\lambda)^{m}$.
(7) Let $T: V \longrightarrow V$ denote a linear operator on the real vector space V. Suppose that V is the direct sum $U \oplus W$ of T-invariant subspaces $U, W \subset V$. If λ is an eigenvalue for T, then show that either $\operatorname{dim}\left(E_{\lambda} \cap U\right) \geq 1$ or $\operatorname{dim}\left(E_{\lambda} \cap W\right) \geq 1$.
Solution: Every vector $\mathbf{v} \in V$ can be written uniquely as a sum of a vector in U with a vector in W ; thus

$$
\text { (i) } \mathbf{v}=\mathbf{u}+\mathbf{w}
$$

where $\mathbf{u} \in U$ and $\mathbf{w} \in W$. From (i) we deduce
(ii) $\quad \lambda \mathbf{v}=\lambda \mathbf{u}+\lambda \mathbf{w}$
and

$$
(i i i) \quad T(\mathbf{v})=T(\mathbf{u})+T(\mathbf{w})
$$

If $\mathbf{v} \in E_{\lambda}$ we have that

$$
(i v) \quad T(\mathbf{v})=\lambda \mathbf{v}
$$

Note also that

$$
(v) \quad \lambda \mathbf{u}, T(\mathbf{u}) \in U \quad \text { and } \quad \lambda \mathbf{w}, T(\mathbf{w}) \in W .
$$

Now, by (iv) and (v), equations (ii) and (iii) give two ways to write $\lambda \mathbf{v}$ as a sum of a vector in U with a vector in W ; by uniqueness of such a summation it follows that

$$
(v i) \quad T(\mathbf{u})=\lambda \mathbf{u} \quad \text { and } \quad T(\mathbf{w})=\lambda \mathbf{w} .
$$

Thus, assuming $\mathbf{v} \neq \mathbf{0}$, it follows from (vi) that either \mathbf{u} or \mathbf{w} is an eigenvector for T associated to λ.
(8) There will be a problem on the exam similiar to problem (2) or problem (3) at the end of section 7.1.

