MAT 310-F10: REVIEW FOR FINAL EXAM

(1) Consider the the 3x6 matrix over the real numbers A = [a;, ag, a3, a4, a5, ag,
where a; denotes the i’th column. Let B denote the 3 x 6 matrix (over the
real numbers)
01 2 0 7 6
10 3 1 01
1 0 2 0 1 1

(a) Supposeas = (1,2,2)!, a3 = (—2,0,1)%, a4 = (0,4,5)t, a5 = (0,1,1).

Compute the ranks of A and B. Explain why B can not be obtained
from A by a finite number of elementary row operations.
Solution: The first 3 columns of B are independent, so its column
space has dimension 3, thus rank(B)=3. The second, third and fifth
column of A are independent, so its column space has dimension 3,
thus rank(A)=3.

If B could be obtained from A by elementary row operations, then
there would exist an invertible, 3 x 3-matrix C such that Cb; = a;
holds for all 1 < i < 6 (b; denotes the i’th column of B). Since the
{ba, b3, by} are idependent, and left multiplication by an invertible
matrix C sends an independent set to an independent set, it would
follow that {ag, a3, a4} must be independent — which it is not.

(b) Suppose that a; = (1,1,1)%, a4 = (1,0,5), ag = (1,2,3); also
suppose that B is obtained from A by a finite number of elementary
row operations. Then compute the coordinates of ag.

Solutions: We have that a; = Cb; holds for all 1 < ¢ < 6 for some
invertible matrix C. Note that b3 = —10by + by + 2bg. Thus ag =
Cbs = —10Cbg + Cby + 2Cbg = —10as + a4 + 2ag = (—7, —6, 1)t.

Hint: read the proof of Theorem 3.16 on page 190.

(2) Consider the following 3 x 3 matrix A (over the real numbers)

7T —4 0
8 —35 0
6 —6 3

(a) Compute the determinant for A, det(A)="?
Solution: det(A)=-9
(b) Compute the characteristic polynomial of A, pa(t) =7
Solution: pa(t) = —t3 +5t2 — 3t —9
1
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(c) Compute eigenvalues for A; for each eigenvalue A compute its mulit-
plicity and find a basis for the eigenspace E).
Solution: pa(t) = —(t+1)(t—3)? so the eigenvalues are -1,3 having
multiplicity 1,2 respectively. A basis for E_1 is {(2,4,3)!}. A basis
for B3 is {(1,1,0)%,(0,0,1)'}.

(d) Diagonalize A; that is write Q 'AQ = D, where D is a diagonal

matrix.
Solution: D is the matrix
-1 0 0
3 0
0 3
@ is the matrix
2 1 0
4 1 0
3 0 1

(e) Compute A%=? (Hint: If A = QDQ~! then A" = QD"Q~! for
any positive integer n.)
Solution: Note that D™ is the matrix

(=" 0 0
0 3" 0
0 0 3"
So A™ is the product of the 3 matrices QD"Q!.

(3) Define a linear transformation 7' : P3(R) — P3(R) by T'(f(x)) =
xf'(x) + f"(x) — f(2) for each polynomial f(z) € P3(R). ;
(a) Compute det(T) and the characteristic polynomial pp(t) for T
Solution: If o denotes the standard basis {1,z, 22, 23} for P3(R)
then [T, is the matrix

-1 -2 -2 -8
0 1 0 6
0 0 2 0
o 0 o0 3

Since this is an upper triangular matrix the determinant is the prod-
uct of the diagonal elements

det([T)) = (~1)(1)(2)(3) = 6.
Likewise pip), (t) = det([T]a — tly) = (=1 = t)(1 = )(2 = )(3 — 1).
Finally note that det(T) = det([T]s) and pr(t) = pipy, (1)
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(b) Find all the eigenvalues for T; for each eigenvalue A\ compute its
multiplicity and find a basis for its eignspace E.
Solution: The eigenvalues are -1,1,2,3. Each eigenvalue has multi-
plicity one.

A basis for E_; is {1}; a basis for E; is {x — 1}; a basis for Fy is

{a? — 2}; a basis for F3 is {z® + 3z — 14—4}

(c) Find a basis for P3(R) consisting of eigenvectors for 7.
Solution: The four vectors given in part (b) are such a basis.

(d) Compute T%5(x3) =? (Hint: express the polynomial 3 as a linear
combination of the basis elements given in part (c) above.)
Solution: Note that

14 1
x?’:(x?’—i—?)x—z)—?)(x—l)—i-i(l)
. Thus
45,3 45,3 14 45 L a5
T%(x°) =T (x —|—3x—z)—3T (w—1)+§T (1) =
14 1

45(,.3
Y30 )~ 3@ —1)— =
3% (z° + 3z 4) 3(z—1) 5

(4) A polynomial f(z) € P(F) is called irreducible over the field F' if when-
ever f(z) = g(z)h(x) for g(x), h(x) € P(F) then either g(x) = awor h(z) = «
for some « € F.

Let V denote a finite dimensional vector space over the field F and let

T :V — V denote a linear transformation. Show that if the characteristic
polynomial Pr(t) for T is irreducible then V' is a T-cyclic subspace (of itself)
generated by some v € V. (Hint: T-cyclic subspaces are defined on page
313 in section 5.4; see also Theorem 5.21 on page 314.)
Solution: Choose any non-zero vector v € V', and let W denote the T-cyclic
subspace of V generated by v. Then W is also a T-invariant subspace of V
(see section 5.4 of text), so Theorem 5.21 states that the characteristic poly-
nomial pry, (¢) for Tyy is a factor of the characteristic polynomial pr(¢) for T.
Since pr(t) is irreduciable we conclude that pry, (t) = apr(t) for some scalar
a; hence deg(pry, (t)) = deg(pr(t)), which implies that dim(W)=dim(V),
which implies that W=V.

(5) Let F' denote a field. Given A € Mjzy3(F), define a linear operator

T : Msy3(F) — Msxs3(F) by T(B) = AB for any B € Msy3(F). Explain

why any T-cyclic subspace W C Mszy3(F) satisfies dim(W) < 3. (Hint:
Cayley-Hamilton Theorem for matrices.)

Solution: Any T-cyclic subspace W has the form span(B, AB, A’B, A3B, ..., A"B, ....)
for some B € M3y3(F). It will suffice to show that

(4) W = span(B, AB, A’B).
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Let —t3 + at® + bt + ¢ denote the characteristic polynmial for the matrix A;
then, by the matrix form of the Cayley-Hamilton theorem, we have
(i) — A3+ aA? + A+ cl3 = 0.
Deduce from (ii) that
(i4i) ~ A"B =aA" 'B+bA" 2B+ cA" B
for all n > 3. It follows from (iii) that
(iv) span(B, AB, A’B, ...., A" "' B) = span(B, AB, A%, ...., A" B)
for all n > 3. Thus by induction over n in (iv) we get that
(v) span(B, AB, A’B) = span(B, AB, A2, ..., A"B)
for all n > 3.

(6) Let T : V. — V denote a linear operator on the finite dimensional
vector space V over the field F; and let idy : V — V denote the identity
map. For some v € V, A € F and m a positive integer suppose that
(T — Nidy)™ 1(v) # 0 but (T — Xidy)™(v) = 0.
(a) Show that A is an eigenvalue for T.
Solution: Set w = (T'— \idy )™ 1(v); then w # 0 and T(w) = \w.
Thus w is an eigenvector for T associated to the eigenvalue A.
(b) Show that 3 = {(T' — Xidy)*(v) | i = 0,1,2,...,m — 1} is an indepen-
dent subset of V.
Solution: Suppose that
m—1
(i) D a(T—Nidy)'(v) =0
i=j
is a given linear relation with a; # 0. By applying (T — Xidy )™ 177
to both sides of (i) we get

(i) a;(T — Nidy)™ H(v) = 0.

Since (T — Xidy )™ 1(v) # 0 it follows from (ii) that a; = 0; this is
a contradiction.

(c) Set W = span(f). Explain why the subspace W is T-invariant.
Solution: Set w; = (T — \idy)"~!(v). Note that
So T maps the spanning set for W into W; thus (W) C W.

(d) Explain why (¢ — A)™ is a factor of the characteristic polynomial of
T; ie. pr(t) = (t — X\)™g(t) for some ¢(t) € P(F). (Hint: What is
the characteristic polynomial pry, () and why is it a factor of pr(t)?)
Solution: W is a T invariant subspace of V (part (c)); so pr, (t)
divides pr(t) (theorem 5.21). [ is a basis for W (part (b)); and the

matrix [T]g is an m x m Jordan Block matrix having A down the
diagonal (see (i) in part (c)). Thus pp, (t) = (=1)™( — A)™.
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(7) Let T : V. — V denote a linear operator on the real vector space V.
Suppose that V is the direct sum U@ W of T-invariant subspaces U, W C V.
If X\ is an eigenvalue for T, then show that either dim(E\ NU) > 1 or
dim(E)\ N W) > 1.
Solution: Every vector v € V can be written uniquely as a sum of a vector
in U with a vector in W; thus

(7) v=u+w
where u € U and w € W. From (i) we deduce

(i) AV = Au + A\w
and
(7i1) T(v)=T(u)+T(w).

If v € E, we have that

(iv) T(v) = Av.
Note also that

(v) A, T(u) eU and w,T(w) e W.
Now, by (iv) and (v), equations (ii) and (iii) give two ways to write A\v as a
sum of a vector in U with a vector in W; by uniqueness of such a summation
it follows that
(vi) T(u)=Au and T(w)=Aw.

Thus, assuming v # 0, it follows from (vi) that either u or w is an eigen-
vector for T associated to A.

(8) There will be a problem on the exam similiar to problem (2) or problem
(3) at the end of section 7.1.



