MAT 310-F10: REVIEW FOR FINAL EXAM

(1) Consider the the 3×6 matrix over the real numbers $A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6]$, where \mathbf{a}_i denotes the i'th column. Let *B* denote the 3×6 matrix (over the real numbers)

(a) Suppose $\mathbf{a}_2 = (1, 2, 2)^t$, $\mathbf{a}_3 = (-2, 0, 1)^t$, $\mathbf{a}_4 = (0, 4, 5)^t$, $\mathbf{a}_5 = (0, 1, 1)^t$. Compute the ranks of A and B. Explain why *B* can not be obtained from *A* by a finite number of elementary row operations.

Solution: The first 3 columns of B are independent, so its column space has dimension 3, thus rank(B)=3. The second, third and fifth column of A are independent, so its column space has dimension 3, thus rank(A)=3.

If B could be obtained from A by elementary row operations, then there would exist an invertible, 3×3 -matrix C such that $C\mathbf{b}_i = \mathbf{a}_i$ holds for all $1 \leq i \leq 6$ (\mathbf{b}_i denotes the i'th column of B). Since the $\{\mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ are idependent, and left multiplication by an invertible matrix C sends an independent set to an independent set, it would follow that $\{\mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ must be independent — which it is not.

(b) Suppose that $\mathbf{a}_2 = (1, 1, 1)^t$, $\mathbf{a}_4 = (1, 0, 5)^t$, $\mathbf{a}_6 = (1, 2, 3)^t$; also suppose that *B* is obtained from *A* by a finite number of elementary row operations. Then compute the coordinates of \mathbf{a}_3 . **Solutions:** We have that $\mathbf{a}_i = C\mathbf{b}_i$ holds for all $1 \le i \le 6$ for some invertible matrix C. Note that $\mathbf{b}_3 = -10\mathbf{b}_2 + \mathbf{b}_4 + 2\mathbf{b}_6$. Thus $\mathbf{a}_3 = C\mathbf{b}_3 = -10C\mathbf{b}_2 + C\mathbf{b}_4 + 2C\mathbf{b}_6 = -10\mathbf{a}_2 + \mathbf{a}_4 + 2\mathbf{a}_6 = (-7, -6, 1)^t$.

Hint: read the proof of Theorem 3.16 on page 190.

(2) Consider the following 3×3 matrix A (over the real numbers)

- (a) Compute the determinant for A, det(A)=? Solution: det(A)=-9
- (b) Compute the characteristic polynomial of A, $p_A(t) =$? Solution: $p_A(t) = -t^3 + 5t^2 - 3t - 9$

(c) Compute eigenvalues for A; for each eigenvalue λ compute its multiplicity and find a basis for the eigenspace E_{λ} .

Solution: $p_A(t) = -(t+1)(t-3)^2$ so the eigenvalues are -1,3 having multiplicity 1,2 respectively. A basis for E_{-1} is $\{(2,4,3)^t\}$. A basis for E_3 is $\{(1,1,0)^t, (0,0,1)^t\}$.

(d) Diagonalize A; that is write $Q^{-1}AQ = D$, where D is a diagonal matrix.

Solution: D is the matrix

 $^{-1}$ 0 0 0 3 0 0 0 3 Q is the matrix 21 0 4 1 0 3 1 0

(e) Compute $A^{99}=?$ (**Hint:** If $A = QDQ^{-1}$ then $A^n = QD^nQ^{-1}$ for any positive integer n.)

Solution: Note that D^n is the matrix

$$(-1)^n ext{ 0 } 0 ext{ 0 } 3^n ext{ 0 } 0 ext{ 0 } 0 ext{ 0 } 3^n ext{ 0 } 0 ext{ 0 } 0 ext{ 0 } 3^n ext{ 0 } 0 ex$$

So A^n is the product of the 3 matrices QD^nQ^{-1} .

- (3) Define a linear transformation $T : P_3(\mathbb{R}) \longrightarrow P_3(\mathbb{R})$ by T(f(x)) = xf'(x) + f''(x) f(2) for each polynomial $f(x) \in P_3(\mathbb{R})$.
 - (a) Compute det(T) and the characteristic polynomial $p_T(t)$ for T. Solution: If α denotes the standard basis $\{1, x, x^2, x^3\}$ for $P_3(\mathbb{R})$ then $[T]_{\alpha}$ is the matrix

-1	- 2	2 -	- 2	-8
	0	1	0	6
	0	0	2	0
	0	0	0	3

Since this is an upper triangular matrix the determinant is the product of the diagonal elements

$$det([T]_{\alpha}) = (-1)(1)(2)(3) = -6.$$

Likewise $p_{[T]_{\alpha}}(t) = det([T]_{\alpha} - tI_4) = (-1 - t)(1 - t)(2 - t)(3 - t).$ Finally note that $det(T) = det([T]_{\alpha})$ and $p_T(t) = p_{[T]_{\alpha}}(t).$

 $\mathbf{2}$

(b) Find all the eigenvalues for T; for each eigenvalue λ compute its multiplicity and find a basis for its eignspace E_{λ} . Solution: The eigenvalues are -1,1,2,3. Each eigenvalue has multiplicity one.

A basis for E_{-1} is $\{1\}$; a basis for E_1 is $\{x-1\}$; a basis for E_2 is $\{x^2 - \frac{2}{3}\}$; a basis for E_3 is $\{x^3 + 3x - \frac{14}{4}\}$

- (c) Find a basis for $P_3(\mathbb{R})$ consisting of eigenvectors for T. Solution: The four vectors given in part (b) are such a basis.
- (d) Compute $T^{45}(x^3) =$? (**Hint:** express the polynomial x^3 as a linear combination of the basis elements given in part (c) above.) Solution: Note that

$$x^{3} = (x^{3} + 3x - \frac{14}{4}) - 3(x - 1) + \frac{1}{2}(1)$$

. Thus

$$T^{45}(x^3) = T^{45}(x^3 + 3x - \frac{14}{4}) - 3T^{45}(x-1) + \frac{1}{2}T^{45}(1) =$$
$$3^{45}(x^3 + 3x - \frac{14}{4}) - 3(x-1) - \frac{1}{2}.$$

(4) A polynomial $f(x) \in P(F)$ is called *irreducible* over the field F if whenever f(x) = g(x)h(x) for $g(x), h(x) \in P(F)$ then either $g(x) = \alpha$ or $h(x) = \alpha$ for some $\alpha \in F$.

Let V denote a finite dimensional vector space over the field F and let $T: V \longrightarrow V$ denote a linear transformation. Show that if the characteristic polynomial $P_T(t)$ for T is irreducible then V is a T-cyclic subspace (of itself) generated by some $\mathbf{v} \in V$. (**Hint:** *T-cyclic subspaces* are defined on page 313 in section 5.4; see also Theorem 5.21 on page 314.)

Solution: Choose any non-zero vector $\mathbf{v} \in V$, and let W denote the T-cyclic subspace of V generated by \mathbf{v} . Then W is also a T-invariant subspace of V (see section 5.4 of text), so Theorem 5.21 states that the characteristic polynomial $p_{T_W}(t)$ for T_W is a factor of the characteristic polynomial $p_T(t)$ for T. Since $p_T(t)$ is irreduciable we conclude that $p_{T_W}(t) = \alpha p_T(t)$ for some scalar α ; hence $deg(p_{T_W}(t)) = deg(p_T(t))$, which implies that $\dim(W) = \dim(V)$, which implies that W = V.

(5) Let F denote a field. Given $A \in M_{3\times 3}(F)$, define a linear operator $T: M_{3\times 3}(F) \longrightarrow M_{3\times 3}(F)$ by T(B) = AB for any $B \in M_{3\times 3}(F)$. Explain why any T-cyclic subspace $W \subset M_{3\times 3}(F)$ satisfies $dim(W) \leq 3$. (Hint: Cayley-Hamilton Theorem for matrices.)

Solution: Any T-cyclic subspace W has the form $span(B, AB, A^2B, A^3B, ..., A^nB, ...)$ for some $B \in M_{3\times 3}(F)$. It will suffice to show that

(i)
$$W = span(B, AB, A^2B).$$

Let $-t^3 + at^2 + bt + c$ denote the characteristic polynmial for the matrix A; then, by the matrix form of the Cayley-Hamilton theorem, we have

(*ii*)
$$-A^3 + aA^2 + bA + cI_3 = 0.$$

Deduce from (ii) that

iii)
$$A^n B = aA^{n-1}B + bA^{n-2}B + cA^{n-3}B$$

for all $n \geq 3$. It follows from (iii) that

$$(iv)$$
 $span(B, AB, A^2B, ..., A^{n-1}B) = span(B, AB, A^2, ..., A^nB)$

for all $n \geq 3$. Thus by induction over n in (iv) we get that

$$(v) \qquad span(B, AB, A^2B) = span(B, AB, A^2, ..., A^nB)$$

for all $n \geq 3$.

(6) Let $T: V \longrightarrow V$ denote a linear operator on the finite dimensional vector space V over the field F; and let $id_V: V \longrightarrow V$ denote the identity map. For some $\mathbf{v} \in V$, $\lambda \in F$ and m a positive integer suppose that $(T - \lambda id_V)^{m-1}(\mathbf{v}) \neq \mathbf{0}$ but $(T - \lambda id_V)^m(\mathbf{v}) = \mathbf{0}$.

- (a) Show that λ is an eigenvalue for T. **Solution:** Set $\mathbf{w} = (T - \lambda i d_V)^{m-1}(\mathbf{v})$; then $\mathbf{w} \neq \mathbf{0}$ and $T(\mathbf{w}) = \lambda \mathbf{w}$. Thus \mathbf{w} is an eigenvector for T associated to the eigenvalue λ .
- (b) Show that $\beta = \{(T \lambda i d_V)^i(\mathbf{v}) \mid i = 0, 1, 2, ..., m 1\}$ is an independent subset of V.

Solution: Suppose that

(i)
$$\sum_{i=j}^{m-1} a_i (T - \lambda i d_V)^i (\mathbf{v}) = \mathbf{0}$$

is a given linear relation with $a_j \neq 0$. By applying $(T - \lambda i d_V)^{m-1-j}$ to both sides of (i) we get

(*ii*)
$$a_j(T - \lambda i d_V)^{m-1}(\mathbf{v}) = \mathbf{0}.$$

Since $(T - \lambda i d_V)^{m-1}(\mathbf{v}) \neq \mathbf{0}$ it follows from (ii) that $a_j = 0$; this is a contradiction.

(c) Set $W = span(\beta)$. Explain why the subspace W is T-invariant. Solution: Set $\mathbf{w}_i = (T - \lambda i d_V)^{i-1}(\mathbf{v})$. Note that

$$i)$$
 $T(\mathbf{w}_i) = \mathbf{w}_{i+1} + \lambda \mathbf{w}_i.$

So T maps the spanning set for W into W; thus $T(W) \subset W$.

(d) Explain why $(t - \lambda)^m$ is a factor of the characteristic polynomial of T; i.e. $p_T(t) = (t - \lambda)^m g(t)$ for some $g(t) \in P(F)$. (**Hint:** What is the characteristic polynomial $p_{T_W}(t)$ and why is it a factor of $p_T(t)$?) **Solution:** W is a T invariant subspace of V (part (c)); so $p_{T_V}(t)$ divides $p_T(t)$ (theorem 5.21). β is a basis for W (part (b)); and the matrix $[T]_\beta$ is an $m \times m$ Jordan Block matrix having λ down the diagonal (see (i) in part (c)). Thus $p_{T_V}(t) = (-1)^m (t - \lambda)^m$.

(7) Let $T: V \longrightarrow V$ denote a linear operator on the real vector space V. Suppose that V is the direct sum $U \oplus W$ of T-invariant subspaces $U, W \subset V$. If λ is an eigenvalue for T, then show that either $\dim(E_{\lambda} \cap U) \ge 1$ or $\dim(E_{\lambda} \cap W) \ge 1$.

Solution: Every vector $\mathbf{v} \in V$ can be written uniquely as a sum of a vector in U with a vector in W; thus

(i) $\mathbf{v} = \mathbf{u} + \mathbf{w}$

where $\mathbf{u} \in U$ and $\mathbf{w} \in W$. From (i) we deduce

(*ii*)
$$\lambda \mathbf{v} = \lambda \mathbf{u} + \lambda \mathbf{w}$$

and

(*iii*)
$$T(\mathbf{v}) = T(\mathbf{u}) + T(\mathbf{w}).$$

If $\mathbf{v} \in E_{\lambda}$ we have that

$$iv$$
) $T(\mathbf{v}) = \lambda \mathbf{v}.$

Note also that

(v)
$$\lambda \mathbf{u}, T(\mathbf{u}) \in U$$
 and $\lambda \mathbf{w}, T(\mathbf{w}) \in W$.

Now, by (iv) and (v), equations (ii) and (iii) give two ways to write $\lambda \mathbf{v}$ as a sum of a vector in U with a vector in W; by uniqueness of such a summation it follows that

(vi)
$$T(\mathbf{u}) = \lambda \mathbf{u}$$
 and $T(\mathbf{w}) = \lambda \mathbf{w}$.

Thus, assuming $\mathbf{v} \neq \mathbf{0}$, it follows from (vi) that either \mathbf{u} or \mathbf{w} is an eigenvector for T associated to λ .

(8) There will be a problem on the exam similiar to problem (2) or problem (3) at the end of section 7.1.