1. EXERCISES:

- (1) Solve problems 3A, 3C, 3D, 3E(first half), 3F (especially if you are an algebraic geometer!).
- (2) For any ring R, compute $H^*(\mathbb{RP}^n; R)$ by induction. (Hint: Show that \mathbb{RP}^n can be obtained from \mathbb{RP}^{n-1} by gluing in an *n*-cell attached in a particular way.) Compute the cup product as well.
- (3) (Note: all manifolds in this course are Hausdorff and paracompact.)

Show that if a smooth vector bundle has a global trivialization as a *topological* vector bundle then it has a global trivialization as a *smooth* vector bundle using the Steenrod approximation theorem:

Theorem 1.1. (Steenrod approximation theorem.) Let $\pi : V \to B$ be a smooth vector bundle and suppose that we have a fixed metric $|\cdot|$ on V. Then every continuous section s of π can be 'approximated' by a smooth section. More precisely, for every $\epsilon > 0$, there exists a smooth section s' of π so that $|s - s'| < \epsilon$.

- (4) More generally, show that if two smooth vector bundles are isomorphic as topological vector bundles then they are isomorphic as smooth vector bundles.
- (5) Prove the Steenrod approximation theorem assuming that the following Theorem is true:

Theorem 1.2. Let $f : B \to \mathbb{R}$ be a continuous function on a manifold B and let $U \subset B$ be an open set and $A \subset U$ a closed subset of U. Suppose that $f|_U$ is smooth. Then for all $\epsilon > 0$ there is a smooth function $g : B \to \mathbb{R}$ so that $g|_A = f|_A$ and so that $|f(x) - g(x)| < \epsilon$ for all $x \in B$.