
1. Vector Bundles

Convention: All manifolds here are Hausdorff and paracompact. To make our life easier,
we will assume that all topological spaces are homeomorphic to CW complexes unless stated
otherwise.

The definition of a smooth vector bundle in some sense is similar to the definition of a
smooth manifold except that ‘chart’ is now replaced with ‘trivialization’.

Definition 1.1. A smooth real vector bundle of rank k over a base B is a smooth
surjection π : V −→ B between smooth manifolds, an open cover (Ui)i∈S of M , and homeo-
morphisms τi : π−1(Ui) −→ Ui×Rk called trivializations satisfying the following properties:

(1) Let πUi : Ui ×Rk −→ Ui be the natural projection. Then π|π−1(Ui) = πi ◦ τi. In other
words, we have the following commutative diagram:

π−1(Ui) Ui × Rk

Ui

π|π−1(Ui)
πUi

τi

(2) The transition maps

τi ◦ τ−1j : (Ui × Uj)× Rk −→ (Ui × Uj)× Rk

are smooth maps satisfying:

τi ◦ τ−1j (x, z) = (x,Φij(x).z)

where

Φij : Ui ∩ Uj −→ GL(Rk)
is a smooth map.

We will call the maps Φij : Ui ∩ Uj −→ GL(Rk) transition data.

Remark 1 Instead of writing π : V −→ B, (Ui)i∈S , (τi)i∈S we will just write π : V −→ B
for a vector bundle.

Remark 2: Note that we can change the groupGL to other groups such as SL(Rk) (matrices
of determinant 1) or O(Rk), orthogonal matrices or GL(n,C) complex n× n matrices where

we identify Rk ∼= Ck/2 (if k is even).
Remark 3: If we formally replace Rk with a smooth manifold F and the group GL(n,R)

with a group G and a group homomorphism G → Diff(F ) then we get the definition of a
fiber bundle with structure group G.

Remark 4: Note that the trivializations (τi)i∈S form an atlas on V and hence uniquely
specify the smooth structure on E. Hence in the above definition, we only need to specify
that V is a set and the formally replace the words ‘smooth surjection’ with ‘surjection’.

Remark 5: We can also have that E,B are topological spaces and all the maps are contin-
uous including the transition maps. Then this is a topological vector bundle.

Exercise: give a definition of a topological vector bundle.

Technically, a smooth real vector bundle of rank k has an equivalence class of open covers
and trivializations (just as a manifold really consists of a set with an equivalence class of
charts). Two such sets of open covers (Ui)i∈S , (U ′i)i∈S′ and trivializations

(τi : π−1(Ui) −→ Ui × Rk)i∈S , (τ ′i : π−1(U ′i) −→ U ′i × Rk)i∈S′
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associated to these open covers are equivalent if their union satisfies (1) and (2). In other
words,

τ ′i ◦ τ−1j : (U ′i × Uj)× Rk −→ (U ′i × Uj)× Rk

are smooth maps satisfying:

τ ′i ◦ τ−1j (x, z) = (x,Φij(x).z)

where
Φij : U ′i ∩ Uj −→ GL(Rk)

is a smooth map for all i ∈ S and j ∈ S′.
Definition 1.2. A trivialization of π : V −→ B over an open set U ⊂ B of a smooth
vector bundle as above is a smooth map:

τ : π−1(U) −→ U × Rk

satisfying

τi ◦ τ−1 : (Ui ∩ U)× Rk −→ (Ui ∩ U)× Rk, τi ◦ τ−1(x, z) = (x,Φi(z))

for some smooth Φi : Ui ∩ U −→ GL(Rk).
In Milnor’s book this is called a local coordinate system.

Example 1.3. The trivial Rk bundle over B is the smooth map πB : B×Rk −→ B where
πB is the natural projection map and the open cover is just B and the trivialization τ is just
the identity map.

Example 1.4. The tangent bundle πTB : TB −→ B of a manifold B is constructed as
follows:

Here TB is the set of equivalence classes of smooth maps γ : R −→ B where two such
paths γ1, γ2 are tangent if γ1(0) = γ2(0) and d

dt(ψ ◦ γ1(t))|t=0 = d
dt(ψ ◦ γ2(t))|t=0 for some

chart ψ of B containing γ1(0).
The open cover (Ui)i∈S of B consists of the domains of charts ψi : Ui −→ Rk on B. The

trivialization τi : π−1(Ui) −→ Ui × Rk is the map τi(γ) = (γ(0), ddt(ψ ◦ γ)|t=0).

Vector bundles can be built just from the data Φij as in Definition 1.1. Note that this is
a very similar procedure to constructing a manifold for a bunch of maps (corresponding to
atlases) and transition functions ‘gluing’ these atlases together.

Constructing vector bundles from transition data: This is called the Fiber bundle
Construction Theorem (in the case of fiber bundles).

Let B be a smooth manifold and (Ui)i∈S an open cover and let

Φij : Ui ∩ Uj −→ GL(Rk), i, j ∈ S
be smooth maps satisfying the cocycle condition:

Φij(x)Φjk(x) = Φik(x) ∀x ∈ Ui ∩ Uj ∩ Uk.
Then we can construct a vector bundle with associated open cover (Ui)i∈S and transition

data Φij as follows: Here we define

V ≡
(
ti∈SUi × Rk

)
/ ∼

where (u, x) ∼ (u,Φij(x)) for all u ∈ Ui∩Uj , x ∈ Rk and all i, j ∈ S. Here π : V −→ B sends

(u, x) ∈ Ui × Rk to u ∈ B.
Exercise: Show that V is a Hausforff paracompact C∞ manifold with atlas given by Ui×F

and then show that π : V −→ B is a vector bundle.
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Definition 1.5. A homomorphism between two vector bundles π1 : V1 −→ B, π2 :
V2 −→ B of rank k over the base B is a smooth map Ψ : V1 −→ V2 so that

(1) The diagram

V1 V2

B

π1 π2

Ψ

commutes and
(2) Any two trivializations

τ1 : π−11 (U1) −→ U1 × Rk, τ2 : π−11 (U2) −→ U2 × Rk,

satisfy

τ2 ◦Ψ ◦ τ−11 : (U1 ∩ U2)× Rk −→ (U1 ∩ U2)× Rk, τi ◦ τ−1(x, z) = (x,Φ(z))

for some smooth Φ : U1 ∩ U2 −→ Hom(Rk).
A isomorphism is a homomorphism Ψ which is a diffeomorphism.
(Ex: Show that it’s inverse is also a vector bundle homomorphism).

Example 1.6. Let πB : B × Rk −→ B be a trivial vector bundle 1.3 Then for any smooth
map Φ : B −→ Hom(Rk;Rk), we have a vector bundle homomorphism

Ψ : B × Rk −→ B × Rk, Ψ(x, z) = (x,Φ(z)).

This is an isomorphism if Im(Φ) ⊂ GL(Rk).

Definition 1.7. A vector subbundle of a vector bundle π2 : V2 −→ B is a submanifold
V1 ⊂ V2 so that π2|V1 : V1 −→ B is a vector bundle and the inclusion map V1 ↪→ V2 is a
vector bundle homomorphism.

Definition 1.8. If φ : B1 −→ B2 is a smooth map and π1 : V1 −→ B1, π2 : V2 −→ B1 are
vector bundles of rank k then a smooth map Ψ : V1 −→ V2 is a bundle map covering φ if

(1)

V1 V2

B1 B2

π1 π2

Ψ

φ

commutes and
(2) Any two trivializations

τ1 : π−11 (U1) −→ U1 × Rk, τ2 : π−11 (U2) −→ U2 × Rk,

satisfy

τ2 ◦Ψ ◦ τ−11 : (U1 ∩ U2)× Rk −→ (U1 ∩ U2)× Rk, τ2 ◦ τ−11 (x, z) = (x,Φ(z))

for some smooth Φ : U1 ∩ U2 −→ Hom(Rk).
Again this is an ismorphism if Ψ is a diffeomorphism (exercise: show that in this case, φ

is a diffeomorphism and Ψ has an inverse bundle map covering φ−1)

Definition 1.9. Let f : B1 −→ B2 be a smooth map and let π2 : V2 −→ B2 be a smooth
map. Then the pullback bundle f∗π2 : f∗V2 −→ B2 is the bundle is defined as follows:

f∗V2 ≡ {(b, x) ∈ B1 × V2 |f(b) = π2(x)}
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and
f∗π2(b, x) ≡ x.

(Excercise check that this is a vector bundle).

We have a natural bundle map

Ψ : f∗V2 −→ V2, Ψ(b, x) = x

covering f .

Definition 1.10. If B1 ⊂ B2 is a submanifold and π2 : V2 −→ B2 is a submanifold then we
define the restriction of π2 to B1

π2|B1 : V2|B1 −→ B1

as
π2|B1 ≡ ι∗π1, V2|B1 ≡ ι∗V2

where ι : B1 ↪→ B2 is the inclusion map.

We also have other ways of producing now bundles from old ones.

Definition 1.11. Let π : V −→ B, π′ : V ′ −→ B be vector bundles. We define the direct
sum

π1 ⊕ π2 : V1 ⊕ V2 −→ B

to be the bundle whose fiber at b ∈ B is the direct sum of the fibers of π1 and π2 at b.
More precisely: We suppose that our vector bundle π has transition data Φij : Ui ∩

Uj −→ GL(Rk) coming from an open cover (Ui)i∈S and similarly π′ has transition data

Φ′ij : U ′i ∩U ′j −→ GL(Rk) coming from an open cover (U ′i)i∈S′ . Since the bases of these these

vector bundles are the same, we can replace our open covers with refinements so that S = S′

and U ′i = Ui for all i ∈ S = S′. (For instance we can consider the refined open cover (Ui ∩
U ′j)i∈S,j∈S′ with transition data Φ(i1,j1),(i2,j2) ≡ Φi1i2 |Ui1

∩U ′j1∩Ui2
∩U ′j2

for all (i1, j2), (i2, j2) ∈
S × S′ which defines π and we can do the same for π′)

Then the transition data for the direct sum is just

Φij ⊕ Φ′ij : Ui ∩ Uj −→ GL(Rk)⊕GL(Rk
′
) ⊂ GL(Rk+k

′
).

Definition 1.12. We can define the tensor product π ⊗ π′ : V ⊗ V ′ −→ B of these vector
bundles in a similar way by using the transition data:

Φij ⊗ Φ′ij : Ui ∩ Uj −→ GL(Rk ⊗ Rk
′

= Rk1k2)

where Φij × Φ′ij(x1 ⊗ x2) = Φij(x1)⊗ Φ′ij(x2).

The Dual π∗ : V ∗ −→ B has transition data Φ∗ij : Ui ∩ Uj −→ GL((Rk)∗).
Similarly Hom(V1, V2) can be defined with transition data:

ΦHom
ij : Ui ∩ U −→ GL(Hom(Rk,Rk

′
), ΦHom

ij (x).(φ) = Φ′ij(x) ◦ φ ◦ Φij(x).

Or as π∗ ⊗ π′ : V ∗ ⊗ V ′ −→ B.

Exercise: Define the wedge product ∧kV in a similar way.

Definition 1.13. Let π : V −→ B be a vector bundle of dimension k and V ′ ⊂ V a vector
subbundle of dimension k′. The quotient bundle πV/V ′ : V/V ′ −→ B is defined as follows:

Let π′ ≡ π|V . We wish to construct these so that each fiber over b ∈ B is the quotient
vector space π−1(b)/(π′)−1(b). First of all we define this as a set and then we specify the
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trivializations. We define V/V ′ ≡ V/ ∼ where x ∼ x′ if and only if x and x′ are in the same
fiber π−1(b) of π and [x] = [x′] ∈ π−1(b)/(π′)−1(b). We define πV/V ′ to be the map sending
[x] to π(x).

We will now construct the trivializations of πV/V ′ . Choose a fine enough open cover (Ui)i∈S
with trivializations τi : π−1(Ui) −→ Ui × Rk so that there is a fixed subspace Hi ⊂ Rk of
dimension k − k′ so that πUi(τi((π

′)−1(x))) ⊂ Rk is a subspace of Rk transverse to Hi where
πUi : Ui × Rk � Ui is the natural projection.

For each i ∈ S choose an isomorphism ιi : Rk/Hi
∼= Rk′ . Define Πi : Rk −→ Rk′ be the

composition

Rk � Rk/Hi

ιi
−→ Rk

′
.

Now we define
τ i : π−1V/V ′(Ui) −→ Ui × Rk

′
, τ i([x]) ≡ Πi(τi(x)).

Exercise: show these maps are well defined and satisfy (1) and (2) from Definition 1.1.

Definition 1.14. Let B ⊂ B′ is a submanifold. The normal bundle of B inside B′ is the
vector bundle (TB′|B)/TB.

Example 1.15. real projective space: Let Sn ≡ {x ∈ Rn+1 : |x| = 1 } be the unit
sphere. We define

RPn ≡ Sn/ ∼, x ∼ x′ iff x = ±x′.
We will write elements of RPn as {±x} where x ∈ Sn.

Define
V ≡ {(±x, y) ∈ RPn × Rn+1 : y = tx for some t ∈ R.}.

Here is a picture of this situation in the case n = 1:

+x

−x

y
t

RP1

We have a line bundle called OPPn(−1) defined as:

π : B −→ RPn, π(±x, y) = ±x.
This has trivializations defined as follows: We define S ≡ {0, · · · , n}. We define

Ui ⊂ RPn, Ui ≡ {±(x0, · · · , xn) ∈ RPn : xi 6= 0}.
We have an associated trivialization

τi : π−1(Ui) −→ Ui × R, τi(±x, (y0, · · · , yn)) ≡ (±x, yi)
where sgn(xi) ≡ xi/|xi|.

Exercise: Check that this is a well defined map and a bijection.
We have that

τj ◦ τ−1i (±(x0, · · · , xn), yi) =
xj
xi
yi.

Hence τi satisfies (1) and (2) from Definition 1.1 where Φij(±(x0, · · · , xn)) =
xj
xi

.
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We also have other line bundles ORPn(n) ≡ ORPn(−1)⊗n if n > 0 and ORPn(0) ≡ RPn × R
and ORPn(−n) ≡ (O(−1)∗)⊗n.

Definition 1.16. A vector bundle π : V −→ B is trivial if it is isomorphic to B × Rk. In
other words, there is a bundle isomorphism Ψ : V −→ B × Rk. Such a bundle isomorphism
is called a global trivialization.

Lemma 1.17. Suppose that π : V −→ B is a trivial bundle. Then for any smooth map
f : B′ −→ B, we have that f∗π : f∗V −→ B′ is also trivial.

Proof. First of all we have a trivialization τ : V −→ B × Rk. Recall that

f∗V ≡ {(b′, x) ∈ B′ × V : f(b′) = π(x) }.

Hence we have a natural bundle homomorphism

Ψ : f∗V −→ V, Ψ(b′, x) ≡ x.

Let πR : B × Rk be the natural projection map. Define

τ ′ : f∗V −→ B′ × Rk, τ ′(b′, x) ≡ (b′, πR(τ(Ψ(b′, x)))).

Exercise: show that τ ′ is a trivialization of f∗π. �
We have the following immediate corollary (due to the fact that the restriction map is

pullback by the inclusion map)

Corollary 1.18. Suppose that π : V −→ B is a trivial bundle and B′ ⊂ B is a submanifold.
Then π|B′ : V |B′ −→ B′ is a trivial bundle.

We wish to construct some non-trivial bundles. Before we do this we need another defini-
tion:

Definition 1.19. Let π : V −→ B be a vector bundle. A section or cross-section is a
smooth map s : B −→ V satisfying π ◦ s = idB.

The zero section is the section sending b ∈ B to 0 in the vector space π−1(b)(in other
words, it is equal to 0 when we compose it with any trivialization τ).

Here is a picture of the image of a section in the case that V = R×R, B = R and π is the
projection map to the first factor:

π

B

V

image of a section
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Note that a section s is uniquely determined by its image in V . This is because the image of

any section is a smooth submanifold B̃ ⊂ V so that π|
B̃

is a diffeomorphism. And conversely
if we have any such submanifold, then we have a section s : B −→ V by defining s(b) to be

the unique intersection point π−1(b) ∩ B̃.

Lemma 1.20. Let π : V −→ B be a vector bundle of rank k. Then π is a trivial vector
bundle if and only if k non-zero sections s1, · · · , sk so that s1(b), · · · , sk(b) form a basis of
π−1(b) for all b ∈ B.

Proof. Suppose that τ : V −→ B×Rk is a trivialization. Fix a basis e1, · · · , ek for Rk. Then
our sections are sj(b) ≡ τ−1(b, ej) for each j ∈ {1, · · · , k}. This have the properties we want.

Conversely, suppose that we have sections s1, · · · , sk so that s1(b), · · · , sk(b) form a basis
of π−1(b) for all b ∈ B. Then we define our trivialization τ as follows. For each x ∈ π−1(b)
there is a unique (α1(x), · · · , αk(x)) ∈ Rk so that x =

∑k
j=1 αj(x)sj(π(x)). The functions

α1(x), · · · , αk(x) smoothly vary as x smoothly varies due to the fact that the sections are
smooth. We define τ(x) ≡ (π(x), (α1(x), · · · , αk(x)). This is a trivialization of π. �

Example 1.21. TS1 is a trivial bundle because of the following picture:

A manifold is called parallelizable if its tangent bundle is trivial.
One can also show that the three sphere is parallelizable. Here S3 ⊂ R4 is the unit

sphere and so TS3 ⊂ TR4 ∼= R4 × R4. The three sections forming a basis for each fiber are:
si(x) = (x, si(x)) where

s1(x) = (−x2, x1,−x4, x3),

s2(x) = (−x3, x4, x1,−x2),

s3(x) = (−x4,−x3, x2, x1).
These formulas come from the quatermionic multiplication on R4 [Steenrod 1951, section
8.5].

Lemma 1.22. The bundle ORPn(−1) from Example 1.15 is not trivial.
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Proof. Let π : V −→ RPn be the bundle O(−1) as constructed in Example 1.15.
Let

ιk : RPk ↪→ RPn, ιk((±(x0, · · · , xk)) = (x0, · · · , xk, 0, · · · , 0)

be the natural embedding. In particular RP1 ⊂ RPn is a submanifold. Therefore it is sufficient
to show that π|RP1 is not trivial by Corollary 1.18. By construction, π|RP1 is isomorphic to
O

RP1
(−1). Therefore we only need to prove this when n = 1.

In this case RP1 is a semicircle with opposite ends identified as in the picture below:

x1

x2

glue

This semi-circle is parameterized by the coordinate x1. So from now on we will refer to
points on this semi-circle with the coordinate x1. The coordinate x2 is equal to

√
1− x21.

The region U1 is the subset of this semi-circle where x1 6= 0. This region is homeomorphic
to:

[−1, 0) ∪ (0, 1]/ ∼, −1 ∼ 1.

The region U2 is the subset where x2 6= 0, which is the region x1 6= ±1 (i.e. the semi-circle
minus the endpoints). Hence this is naturally diffeomorphic to (−1, 1).

We have two trivializations τ1 : π−11 (U1) −→ U1 × R and τ2 : π−11 (U1) −→ U2 × R. We
have:

τ2 ◦ τ−11 : (U1 ∩ U2)× R −→ (U1 ∩ U2)× R, τ2 ◦ τ−11 (x1, y1) = (x1,Ψ12(x1).y1)

where Ψ12(x1) is the 1× 1 matrix

√
1−x21
x1

.
This means that V is obtained from

U1 × R ∼= ([−1, 0) ∪ (0, 1]/ ∼)× R

and

U2 × R ∼= (−1, 1)× R

by gluing the region (−1, 0)×R ⊂ U1×R with (−1, 0)×R ⊂ U2×R using a map (x1, y1)
(−→

x1,Φ12(x1)y1) where Φ12(x1) < 0 is a negative 1 × 1 matrix and also gluing the region

(0, 1)× R ⊂ U1 × R with (0, 1)× R ⊂ U2 × R using a map (x1, y1)
(−→ x1,Φ12(x1)y1) where

Φ12(x1) > 0 is a positive 1× 1 matrix. Hence we have the following schematic picture of this
gluing:
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glue

glue with a vertical twist

U1 × R
U2 × R

Hence we get a mobius strip:

Now if π : V −→ RP1 was a trivial bundle then it would have a nowhere zero section. But
this is impossible as every section has to be zero somewhere:

Here is an illustrative diagram:
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glue with a vertical twist

π

V

glue

graph of a smooth section

In other words, any section must cross the zero section by the intermediate value theorem.
�

Euclidean Vector Bundles

Definition 1.23. Let W be a real finite dimensional vector space. Recall that a bilinear
form is a linear map B : W ⊗W −→ R. A quadratic form is a map Q : W −→ R satisfying
Q(v) = B(v, v) for some bilinear form B.

Note that we can recover the bilinear form B from Q using the formula:

B(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)) (1)

Definition 1.24. A quadratic form Q is positive definite if Q(v) > 0 for all v > 0.
Similarly a bilinear form B is positive definite if Q(v) ≡ B(v, v) > 0 for all v 6= 0.

A Euclidean vector bundle is a vector bundle πV −→ B together with a smooth
function Q : V −→ R whose restriction to each fiber is quadratic and positive definite. The
function Q is called a Euclidean norm.

Equivalently by using the equation (1), a Euclidean vector bundle is a vector bundle
π : V −→ B together with a smooth function µ : V ⊗V −→ R whose restriction to each fiber
is a positive definite bilinear form. The function µ is called a Euclidean metric.

Exercise: show that both definitions of a Euclidean vector bundle are equivalent.

Example 1.25. V is the trivial vector bundleB×Rk with Euclidean norm (b, (x1, · · · , xk)) −→∑k
j=1 x

2
j (or equivalently with the standard Euclidean metric given by the dot product

x1 ⊗ x2 −→ x1.x2).

Lemma 1.26. Let π : V −→ B be a trivial vector bundle of rank k and let µ be any
Euclidean metric. Then there are sections s1, · · · , sk which are normal and orthogonal in the
sense that:

µ(si(b)⊗ sj(b)) = δij
for all i, j ∈ {1, · · · , k} and all b ∈ B.
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Proof. By Lemma 1.20 we have k sections s′1, · · · , s′k so that s′1(b), · · · , s′k(b) form a basis for
π−1(b) for each b ∈ B. We then apply the Gram-Schmidtt process to these sections which
results in the sections s1, · · · , sk that we want.

Exercise: fill in the details. �
Exercise: Show, using the above lemma, that a Euclidean vector bundle is equivalently a

vector bundle with structure group SO(k) [c.f. Steenrod 1951, 12.9]. (Hint: apply the above
lemma to any trivialization τ : U −→ U × Rk, U ⊂ B giving us a new trivialization by
Lemma 1.20. )


