1. Vector Bundles

Convention: All manifolds here are Hausdorff and paracompact. To make our life easier, we will assume that all topological spaces are homeomorphic to CW complexes unless stated otherwise.

The definition of a smooth vector bundle in some sense is similar to the definition of a smooth manifold except that 'chart' is now replaced with 'trivialization'.

Definition 1.1. A smooth real vector bundle of rank k over a base B is a smooth surjection $\pi: V \longrightarrow B$ between smooth manifolds, an open cover $\left(U_{i}\right)_{i \in S}$ of M, and homeomorphisms $\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}^{k}$ called trivializations satisfying the following properties:
(1) Let $\pi_{U_{i}}: U_{i} \times \mathbb{R}^{k} \longrightarrow U_{i}$ be the natural projection. Then $\left.\pi\right|_{\pi^{-1}\left(U_{i}\right)}=\pi_{i} \circ \tau_{i}$. In other words, we have the following commutative diagram:
$\pi^{-1}\left(U_{i}\right) \xrightarrow{\tau_{i}} U_{i} \times \mathbb{R}^{k}$

(2) The transition maps

$$
\tau_{i} \circ \tau_{j}^{-1}:\left(U_{i} \times U_{j}\right) \times \mathbb{R}^{k} \longrightarrow\left(U_{i} \times U_{j}\right) \times \mathbb{R}^{k}
$$

are smooth maps satisfying:

$$
\tau_{i} \circ \tau_{j}^{-1}(x, z)=\left(x, \Phi_{i j}(x) . z\right)
$$

where

$$
\Phi_{i j}: U_{i} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right)
$$

is a smooth map.
We will call the maps $\Phi_{i j}: U_{i} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right)$ transition data.
Remark 1 Instead of writing $\pi: V \longrightarrow B,\left(U_{i}\right)_{i \in S},\left(\tau_{i}\right)_{i \in S}$ we will just write $\pi: V \longrightarrow B$ for a vector bundle.

Remark 2: Note that we can change the group $G L$ to other groups such as $S L\left(\mathbb{R}^{k}\right)$ (matrices of determinant 1) or $O\left(\mathbb{R}^{k}\right)$, orthogonal matrices or $G L(n, \mathbb{C})$ complex $n \times n$ matrices where we identify $\mathbb{R}^{k} \cong \mathbb{C}^{k / 2}$ (if k is even).

Remark 3: If we formally replace \mathbb{R}^{k} with a smooth manifold F and the group $G L(n, \mathbb{R})$ with a group G and a group homomorphism $G \rightarrow \operatorname{Diff}(F)$ then we get the definition of a fiber bundle with structure group G.

Remark 4: Note that the trivializations $\left(\tau_{i}\right)_{i \in S}$ form an atlas on V and hence uniquely specify the smooth structure on E. Hence in the above definition, we only need to specify that V is a set and the formally replace the words 'smooth surjection' with 'surjection'.

Remark 5: We can also have that E, B are topological spaces and all the maps are continuous including the transition maps. Then this is a topological vector bundle.

Exercise: give a definition of a topological vector bundle.
Technically, a smooth real vector bundle of rank k has an equivalence class of open covers and trivializations (just as a manifold really consists of a set with an equivalence class of charts). Two such sets of open covers $\left(U_{i}\right)_{i \in S},\left(U_{i}^{\prime}\right)_{i \in S^{\prime}}$ and trivializations

$$
\left(\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}^{k}\right)_{i \in S}, \quad\left(\tau_{i}^{\prime}: \pi^{-1}\left(U_{i}^{\prime}\right) \longrightarrow U_{i}^{\prime} \times \mathbb{R}^{k}\right)_{i \in S^{\prime}}
$$

associated to these open covers are equivalent if their union satisfies (1) and (2). In other words,

$$
\tau_{i}^{\prime} \circ \tau_{j}^{-1}:\left(U_{i}^{\prime} \times U_{j}\right) \times \mathbb{R}^{k} \longrightarrow\left(U_{i}^{\prime} \times U_{j}\right) \times \mathbb{R}^{k}
$$

are smooth maps satisfying:

$$
\tau_{i}^{\prime} \circ \tau_{j}^{-1}(x, z)=\left(x, \Phi_{i j}(x) . z\right)
$$

where

$$
\Phi_{i j}: U_{i}^{\prime} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right)
$$

is a smooth map for all $i \in S$ and $j \in S^{\prime}$.
Definition 1.2. A trivialization of $\pi: V \longrightarrow B$ over an open set $U \subset B$ of a smooth vector bundle as above is a smooth map:

$$
\tau: \pi^{-1}(U) \longrightarrow U \times \mathbb{R}^{k}
$$

satisfying

$$
\tau_{i} \circ \tau^{-1}:\left(U_{i} \cap U\right) \times \mathbb{R}^{k} \longrightarrow\left(U_{i} \cap U\right) \times \mathbb{R}^{k}, \quad \tau_{i} \circ \tau^{-1}(x, z)=\left(x, \Phi_{i}(z)\right)
$$

for some smooth $\Phi_{i}: U_{i} \cap U \longrightarrow G L\left(\mathbb{R}^{k}\right)$.
In Milnor's book this is called a local coordinate system.
Example 1.3. The trivial \mathbb{R}^{k} bundle over B is the smooth map $\pi_{B}: B \times \mathbb{R}^{k} \longrightarrow B$ where π_{B} is the natural projection map and the open cover is just B and the trivialization τ is just the identity map.

Example 1.4. The tangent bundle $\pi_{T B}: T B \longrightarrow B$ of a manifold B is constructed as follows:

Here $T B$ is the set of equivalence classes of smooth maps $\gamma: \mathbb{R} \longrightarrow B$ where two such paths γ_{1}, γ_{2} are tangent if $\gamma_{1}(0)=\gamma_{2}(0)$ and $\left.\frac{d}{d t}\left(\psi \circ \gamma_{1}(t)\right)\right|_{t=0}=\left.\frac{d}{d t}\left(\psi \circ \gamma_{2}(t)\right)\right|_{t=0}$ for some chart ψ of B containing $\gamma_{1}(0)$.

The open cover $\left(U_{i}\right)_{i \in S}$ of B consists of the domains of charts $\psi_{i}: U_{i} \longrightarrow \mathbb{R}^{k}$ on B. The trivialization $\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}^{k}$ is the map $\tau_{i}(\gamma)=\left(\gamma(0),\left.\frac{d}{d t}(\psi \circ \gamma)\right|_{t=0}\right)$.

Vector bundles can be built just from the data $\Phi_{i j}$ as in Definition 1.1. Note that this is a very similar procedure to constructing a manifold for a bunch of maps (corresponding to atlases) and transition functions 'gluing' these atlases together.

Constructing vector bundles from transition data: This is called the Fiber bundle Construction Theorem (in the case of fiber bundles).

Let B be a smooth manifold and $\left(U_{i}\right)_{i \in S}$ an open cover and let

$$
\Phi_{i j}: U_{i} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right), \quad i, j \in S
$$

be smooth maps satisfying the cocycle condition:

$$
\Phi_{i j}(x) \Phi_{j k}(x)=\Phi_{i k}(x) \quad \forall x \in U_{i} \cap U_{j} \cap U_{k}
$$

Then we can construct a vector bundle with associated open cover $\left(U_{i}\right)_{i \in S}$ and transition data $\Phi_{i j}$ as follows: Here we define

$$
V \equiv\left(\sqcup_{i \in S} U_{i} \times \mathbb{R}^{k}\right) / \sim
$$

where $(u, x) \sim\left(u, \Phi_{i j}(x)\right)$ for all $u \in U_{i} \cap U_{j}, x \in \mathbb{R}^{k}$ and all $i, j \in S$. Here $\pi: V \longrightarrow B$ sends $(u, x) \in U_{i} \times \mathbb{R}^{k}$ to $u \in B$.

Exercise: Show that V is a Hausforff paracompact C^{∞} manifold with atlas given by $U_{i} \times F$ and then show that $\pi: V \longrightarrow B$ is a vector bundle.

Definition 1.5. A homomorphism between two vector bundles $\pi_{1}: V_{1} \longrightarrow B, \pi_{2}:$ $V_{2} \longrightarrow B$ of rank k over the base B is a smooth map $\Psi: V_{1} \longrightarrow V_{2}$ so that
(1) The diagram

commutes and
(2) Any two trivializations

$$
\tau_{1}: \pi_{1}^{-1}\left(U_{1}\right) \longrightarrow U_{1} \times \mathbb{R}^{k}, \quad \tau_{2}: \pi_{1}^{-1}\left(U_{2}\right) \longrightarrow U_{2} \times \mathbb{R}^{k}
$$

satisfy

$$
\tau_{2} \circ \Psi \circ \tau_{1}^{-1}:\left(U_{1} \cap U_{2}\right) \times \mathbb{R}^{k} \longrightarrow\left(U_{1} \cap U_{2}\right) \times \mathbb{R}^{k}, \quad \tau_{i} \circ \tau^{-1}(x, z)=(x, \Phi(z))
$$

for some smooth $\Phi: U_{1} \cap U_{2} \longrightarrow \operatorname{Hom}\left(\mathbb{R}^{k}\right)$.
A isomorphism is a homomorphism Ψ which is a diffeomorphism.
(Ex: Show that it's inverse is also a vector bundle homomorphism).
Example 1.6. Let $\pi_{B}: B \times \mathbb{R}^{k} \longrightarrow B$ be a trivial vector bundle 1.3 Then for any smooth map $\Phi: B \longrightarrow \operatorname{Hom}\left(\mathbb{R}^{k} ; \mathbb{R}^{k}\right)$, we have a vector bundle homomorphism

$$
\Psi: B \times \mathbb{R}^{k} \longrightarrow B \times \mathbb{R}^{k}, \quad \Psi(x, z)=(x, \Phi(z))
$$

This is an isomorphism if $\operatorname{Im}(\Phi) \subset G L\left(\mathbb{R}^{k}\right)$.
Definition 1.7. A vector subbundle of a vector bundle $\pi_{2}: V_{2} \longrightarrow B$ is a submanifold $V_{1} \subset V_{2}$ so that $\left.\pi_{2}\right|_{V_{1}}: V_{1} \longrightarrow B$ is a vector bundle and the inclusion map $V_{1} \hookrightarrow V_{2}$ is a vector bundle homomorphism.
Definition 1.8. If $\phi: B_{1} \longrightarrow B_{2}$ is a smooth map and $\pi_{1}: V_{1} \longrightarrow B_{1}, \quad \pi_{2}: V_{2} \longrightarrow B_{1}$ are vector bundles of rank k then a smooth map $\Psi: V_{1} \longrightarrow V_{2}$ is a bundle map covering ϕ if

(2) Any two trivializations

$$
\tau_{1}: \pi_{1}^{-1}\left(U_{1}\right) \longrightarrow U_{1} \times \mathbb{R}^{k}, \quad \tau_{2}: \pi_{1}^{-1}\left(U_{2}\right) \longrightarrow U_{2} \times \mathbb{R}^{k},
$$

satisfy

$$
\tau_{2} \circ \Psi \circ \tau_{1}^{-1}:\left(U_{1} \cap U_{2}\right) \times \mathbb{R}^{k} \longrightarrow\left(U_{1} \cap U_{2}\right) \times \mathbb{R}^{k}, \quad \tau_{2} \circ \tau_{1}^{-1}(x, z)=(x, \Phi(z))
$$

for some smooth $\Phi: U_{1} \cap U_{2} \longrightarrow \operatorname{Hom}\left(\mathbb{R}^{k}\right)$.
Again this is an ismorphism if Ψ is a diffeomorphism (exercise: show that in this case, ϕ is a diffeomorphism and Ψ has an inverse bundle map covering ϕ^{-1})
Definition 1.9. Let $f: B_{1} \longrightarrow B_{2}$ be a smooth map and let $\pi_{2}: V_{2} \longrightarrow B_{2}$ be a smooth map. Then the pullback bundle $f^{*} \pi_{2}: f^{*} V_{2} \longrightarrow B_{2}$ is the bundle is defined as follows:

$$
f^{*} V_{2} \equiv\left\{(b, x) \in B_{1} \times V_{2} \mid f(b)=\pi_{2}(x)\right\}
$$

and

$$
f^{*} \pi_{2}(b, x) \equiv x .
$$

(Excercise check that this is a vector bundle).
We have a natural bundle map

$$
\Psi: f^{*} V_{2} \longrightarrow V_{2}, \quad \Psi(b, x)=x
$$

covering f.
Definition 1.10. If $B_{1} \subset B_{2}$ is a submanifold and $\pi_{2}: V_{2} \longrightarrow B_{2}$ is a submanifold then we define the restriction of π_{2} to B_{1}

$$
\left.\pi_{2}\right|_{B_{1}}:\left.V_{2}\right|_{B_{1}} \longrightarrow B_{1}
$$

as

$$
\left.\pi_{2}\right|_{B_{1}} \equiv \iota^{*} \pi_{1},\left.\quad V_{2}\right|_{B_{1}} \equiv \iota^{*} V_{2}
$$

where $\iota: B_{1} \hookrightarrow B_{2}$ is the inclusion map.
We also have other ways of producing now bundles from old ones.
Definition 1.11. Let $\pi: V \longrightarrow B, \quad \pi^{\prime}: V^{\prime} \longrightarrow B$ be vector bundles. We define the direct sum

$$
\pi_{1} \oplus \pi_{2}: V_{1} \oplus V_{2} \longrightarrow B
$$

to be the bundle whose fiber at $b \in B$ is the direct sum of the fibers of π_{1} and π_{2} at b.
More precisely: We suppose that our vector bundle π has transition data $\Phi_{i j}: U_{i} \cap$ $U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right)$ coming from an open cover $\left(U_{i}\right)_{i \in S}$ and similarly π^{\prime} has transition data $\Phi_{i j}^{\prime}: U_{i}^{\prime} \cap U_{j}^{\prime} \longrightarrow G L\left(\mathbb{R}^{k}\right)$ coming from an open cover $\left(U_{i}^{\prime}\right)_{i \in S^{\prime}}$. Since the bases of these these vector bundles are the same, we can replace our open covers with refinements so that $S=S^{\prime}$ and $U_{i}^{\prime}=U_{i}$ for all $i \in S=S^{\prime}$. (For instance we can consider the refined open cover $\left(U_{i} \cap\right.$ $\left.U_{j}^{\prime}\right)_{i \in S, j \in S^{\prime}}$ with transition data $\left.\Phi_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \equiv \Phi_{i_{1} i_{2}}\right|_{U_{i_{1}} \cap U_{j_{1}}^{\prime} \cap U_{i_{2}} \cap U_{j_{2}}^{\prime}}$ for all $\left(i_{1}, j_{2}\right),\left(i_{2}, j_{2}\right) \in$ $S \times S^{\prime}$ which defines π and we can do the same for π^{\prime})

Then the transition data for the direct sum is just

$$
\Phi_{i j} \oplus \Phi_{i j}^{\prime}: U_{i} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k}\right) \oplus G L\left(\mathbb{R}^{k^{\prime}}\right) \subset G L\left(\mathbb{R}^{k+k^{\prime}}\right)
$$

Definition 1.12. We can define the tensor product $\pi \otimes \pi^{\prime}: V \otimes V^{\prime} \longrightarrow B$ of these vector bundles in a similar way by using the transition data:

$$
\Phi_{i j} \otimes \Phi_{i j}^{\prime}: U_{i} \cap U_{j} \longrightarrow G L\left(\mathbb{R}^{k} \otimes \mathbb{R}^{k^{\prime}}=\mathbb{R}^{k_{1} k_{2}}\right)
$$

where $\Phi_{i j} \times \Phi_{i j}^{\prime}\left(x_{1} \otimes x_{2}\right)=\Phi_{i j}\left(x_{1}\right) \otimes \Phi_{i j}^{\prime}\left(x_{2}\right)$.
The Dual $\pi^{*}: V^{*} \longrightarrow B$ has transition data $\Phi_{i j}^{*}: U_{i} \cap U_{j} \longrightarrow G L\left(\left(\mathbb{R}^{k}\right)^{*}\right)$.
Similarly $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ can be defined with transition data:

$$
\Phi_{i j}^{\text {Hom }}: U_{i} \cap U \longrightarrow G L\left(\operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{k^{\prime}}\right), \quad \Phi_{i j}^{\text {Hom }}(x) \cdot(\phi)=\Phi_{i j}^{\prime}(x) \circ \phi \circ \Phi_{i j}(x) .\right.
$$

Or as $\pi^{*} \otimes \pi^{\prime}: V^{*} \otimes V^{\prime} \longrightarrow B$.
Exercise: Define the wedge product $\wedge^{k} V$ in a similar way.
Definition 1.13. Let $\pi: V \longrightarrow B$ be a vector bundle of dimension k and $V^{\prime} \subset V$ a vector subbundle of dimension k^{\prime}. The quotient bundle $\pi_{V / V^{\prime}}: V / V^{\prime} \longrightarrow B$ is defined as follows:

Let $\left.\pi^{\prime} \equiv \pi\right|_{V}$. We wish to construct these so that each fiber over $b \in B$ is the quotient vector space $\pi^{-1}(b) /\left(\pi^{\prime}\right)^{-1}(b)$. First of all we define this as a set and then we specify the
trivializations. We define $V / V^{\prime} \equiv V / \sim$ where $x \sim x^{\prime}$ if and only if x and x^{\prime} are in the same fiber $\pi^{-1}(b)$ of π and $[x]=\left[x^{\prime}\right] \in \pi^{-1}(b) /\left(\pi^{\prime}\right)^{-1}(b)$. We define $\pi_{V / V^{\prime}}$ to be the map sending $[x]$ to $\pi(x)$.

We will now construct the trivializations of $\pi_{V / V^{\prime}}$. Choose a fine enough open cover $\left(U_{i}\right)_{i \in S}$ with trivializations $\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}^{k}$ so that there is a fixed subspace $H_{i} \subset \mathbb{R}^{k}$ of dimension $k-k^{\prime}$ so that $\pi_{U_{i}}\left(\tau_{i}\left(\left(\pi^{\prime}\right)^{-1}(x)\right)\right) \subset \mathbb{R}^{k}$ is a subspace of \mathbb{R}^{k} transverse to H_{i} where $\pi_{U_{i}}: U_{i} \times \mathbb{R}^{k} \rightarrow U_{i}$ is the natural projection.

For each $i \in S$ choose an isomorphism $\iota_{i}: \mathbb{R}^{k} / H_{i} \cong \mathbb{R}^{k^{\prime}}$. Define $\Pi_{i}: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{k^{\prime}}$ be the composition

$$
\mathbb{R}^{k} \rightarrow R^{k} / H_{i} \xrightarrow{\iota_{i}} \mathbb{R}^{k^{\prime}} .
$$

Now we define

$$
\bar{\tau}_{i}: \pi_{V / V^{\prime}}^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}^{k^{\prime}}, \quad \bar{\tau}_{i}([x]) \equiv \Pi_{i}\left(\tau_{i}(x)\right)
$$

Exercise: show these maps are well defined and satisfy (1) and (2) from Definition 1.1.
Definition 1.14. Let $B \subset B^{\prime}$ is a submanifold. The normal bundle of B inside B^{\prime} is the vector bundle $\left(\left.T B^{\prime}\right|_{B}\right) / T B$.

Example 1.15. real projective space: Let $S^{n} \equiv\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}$ be the unit sphere. We define

$$
\mathbb{R P}^{n} \equiv S^{n} / \sim, \quad x \sim x^{\prime} \text { iff } x= \pm x^{\prime}
$$

We will write elements of $\mathbb{R} \mathbb{P}^{n}$ as $\{ \pm x\}$ where $x \in S^{n}$.
Define

$$
V \equiv\left\{(\pm x, y) \in \mathbb{R P}^{n} \times \mathbb{R}^{n+1}: y=t x \text { for some } t \in \mathbb{R} .\right\}
$$

Here is a picture of this situation in the case $n=1$:

We have a line bundle called $\mathcal{O}_{\mathbb{P} P}(-1)$ defined as:

$$
\pi: B \longrightarrow \mathbb{R P}^{n}, \quad \pi(\pm x, y)= \pm x
$$

This has trivializations defined as follows: We define $S \equiv\{0, \cdots, n\}$. We define

$$
U_{i} \subset \mathbb{R P}^{n}, \quad U_{i} \equiv\left\{ \pm\left(x_{0}, \cdots, x_{n}\right) \in \mathbb{R P}^{n}: x_{i} \neq 0\right\}
$$

We have an associated trivialization

$$
\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{R}, \quad \tau_{i}\left(\pm x,\left(y_{0}, \cdots, y_{n}\right)\right) \equiv\left(\pm x, y_{i}\right)
$$

where $\operatorname{sgn}\left(x_{i}\right) \equiv x_{i} /\left|x_{i}\right|$.
Exercise: Check that this is a well defined map and a bijection.
We have that

$$
\tau_{j} \circ \tau_{i}^{-1}\left(\pm\left(x_{0}, \cdots, x_{n}\right), y_{i}\right)=\frac{x_{j}}{x_{i}} y_{i} .
$$

Hence τ_{i} satisfies (1) and (2) from Definition 1.1 where $\Phi_{i j}\left(\pm\left(x_{0}, \cdots, x_{n}\right)\right)=\frac{x_{j}}{x_{i}}$.

We also have other line bundles $\mathcal{O}_{\mathbb{R}^{p}}(n) \equiv \mathcal{O}_{\mathbb{R} \mathbb{P}^{n}}(-1)^{\otimes n}$ if $n>0$ and $\mathcal{O}_{\mathbb{R} \mathbb{P}^{n}}(0) \equiv \mathbb{R} \mathbb{P}^{n} \times \mathbb{R}$ and $\mathcal{O}_{\mathbb{R}^{n}}(-n) \equiv\left(\mathcal{O}(-1)^{*}\right)^{\otimes n}$.

Definition 1.16. A vector bundle $\pi: V \longrightarrow B$ is trivial if it is isomorphic to $B \times \mathbb{R}^{k}$. In other words, there is a bundle isomorphism $\Psi: V \longrightarrow B \times \mathbb{R}^{k}$. Such a bundle isomorphism is called a global trivialization.
Lemma 1.17. Suppose that $\pi: V \longrightarrow B$ is a trivial bundle. Then for any smooth map $f: B^{\prime} \longrightarrow B$, we have that $f^{*} \pi: f^{*} V \longrightarrow B^{\prime}$ is also trivial.
Proof. First of all we have a trivialization $\tau: V \longrightarrow B \times \mathbb{R}^{k}$. Recall that

$$
f^{*} V \equiv\left\{\left(b^{\prime}, x\right) \in B^{\prime} \times V: f\left(b^{\prime}\right)=\pi(x)\right\} .
$$

Hence we have a natural bundle homomorphism

$$
\Psi: f^{*} V \longrightarrow V, \quad \Psi\left(b^{\prime}, x\right) \equiv x .
$$

Let $\pi_{\mathbb{R}}: B \times \mathbb{R}^{k}$ be the natural projection map. Define

$$
\tau^{\prime}: f^{*} V \longrightarrow B^{\prime} \times \mathbb{R}^{k}, \quad \tau^{\prime}\left(b^{\prime}, x\right) \equiv\left(b^{\prime}, \pi_{\mathbb{R}}\left(\tau\left(\Psi\left(b^{\prime}, x\right)\right)\right)\right) .
$$

Exercise: show that τ^{\prime} is a trivialization of $f^{*} \pi$.
We have the following immediate corollary (due to the fact that the restriction map is pullback by the inclusion map)
Corollary 1.18. Suppose that $\pi: V \longrightarrow B$ is a trivial bundle and $B^{\prime} \subset B$ is a submanifold. Then $\left.\pi\right|_{B^{\prime}}:\left.V\right|_{B^{\prime}} \longrightarrow B^{\prime}$ is a trivial bundle.

We wish to construct some non-trivial bundles. Before we do this we need another definition:

Definition 1.19. Let $\pi: V \longrightarrow B$ be a vector bundle. A section or cross-section is a smooth map $s: B \longrightarrow V$ satisfying $\pi \circ s=\operatorname{id}_{B}$.

The zero section is the section sending $b \in B$ to 0 in the vector space $\pi^{-1}(b)$ (in other words, it is equal to 0 when we compose it with any trivialization τ).

Here is a picture of the image of a section in the case that $V=\mathbb{R} \times \mathbb{R}, B=\mathbb{R}$ and π is the projection map to the first factor:

Note that a section s is uniquely determined by its image in V. This is because the image of any section is a smooth submanifold $\widetilde{B} \subset V$ so that $\left.\pi\right|_{\widetilde{B}}$ is a diffeomorphism. And conversely if we have any such submanifold, then we have a section $s: B \longrightarrow V$ by defining $s(b)$ to be the unique intersection point $\pi^{-1}(b) \cap \widetilde{B}$.

Lemma 1.20. Let $\pi: V \longrightarrow B$ be a vector bundle of rank k. Then π is a trivial vector bundle if and only if k non-zero sections s_{1}, \cdots, s_{k} so that $s_{1}(b), \cdots, s_{k}(b)$ form a basis of $\pi^{-1}(b)$ for all $b \in B$.

Proof. Suppose that $\tau: V \longrightarrow B \times \mathbb{R}^{k}$ is a trivialization. Fix a basis e_{1}, \cdots, e_{k} for \mathbb{R}^{k}. Then our sections are $s_{j}(b) \equiv \tau^{-1}\left(b, e_{j}\right)$ for each $j \in\{1, \cdots, k\}$. This have the properties we want.

Conversely, suppose that we have sections s_{1}, \cdots, s_{k} so that $s_{1}(b), \cdots, s_{k}(b)$ form a basis of $\pi^{-1}(b)$ for all $b \in B$. Then we define our trivialization τ as follows. For each $x \in \pi^{-1}(b)$ there is a unique $\left(\alpha_{1}(x), \cdots, \alpha_{k}(x)\right) \in \mathbb{R}^{k}$ so that $x=\sum_{j=1}^{k} \alpha_{j}(x) s_{j}(\pi(x))$. The functions $\alpha_{1}(x), \cdots, \alpha_{k}(x)$ smoothly vary as x smoothly varies due to the fact that the sections are smooth. We define $\tau(x) \equiv\left(\pi(x),\left(\alpha_{1}(x), \cdots, \alpha_{k}(x)\right)\right.$. This is a trivialization of π.

Example 1.21. $T S^{1}$ is a trivial bundle because of the following picture:

A manifold is called parallelizable if its tangent bundle is trivial.
One can also show that the three sphere is parallelizable. Here $S^{3} \subset \mathbb{R}^{4}$ is the unit sphere and so $T S^{3} \subset T \mathbb{R}^{4} \cong \mathbb{R}^{4} \times \mathbb{R}^{4}$. The three sections forming a basis for each fiber are: $s_{i}(x)=\left(x, \bar{s}_{i}(x)\right)$ where

$$
\begin{aligned}
& \bar{s}_{1}(x)=\left(-x_{2}, x_{1},-x_{4}, x_{3}\right), \\
& \bar{s}_{2}(x)=\left(-x_{3}, x_{4}, x_{1},-x_{2}\right), \\
& \bar{s}_{3}(x)=\left(-x_{4},-x_{3}, x_{2}, x_{1}\right) .
\end{aligned}
$$

These formulas come from the quatermionic multiplication on $\mathbb{R}^{4}[$ Steenrod 1951, section 8.5].

Lemma 1.22. The bundle $\mathcal{O}_{\mathbb{R} \mathbb{P}^{n}}(-1)$ from Example 1.15 is not trivial.

Proof. Let $\pi: V \longrightarrow \mathbb{R P}^{n}$ be the bundle $\mathcal{O}(-1)$ as constructed in Example 1.15.
Let

$$
\iota_{k}: \mathbb{R P}^{k} \hookrightarrow \mathbb{R P}^{n}, \quad \iota_{k}\left(\left(\pm\left(x_{0}, \cdots, x_{k}\right)\right)=\left(x_{0}, \cdots, x_{k}, 0, \cdots, 0\right)\right.
$$

be the natural embedding. In particular $\mathbb{R P}^{1} \subset \mathbb{R P}^{n}$ is a submanifold. Therefore it is sufficient to show that $\left.\pi\right|_{\mathbb{R P}^{1}}$ is not trivial by Corollary 1.18 . By construction, $\left.\pi\right|_{\mathbb{R} \mathbb{P}^{1}}$ is isomorphic to $\mathcal{O}_{\mathbb{R}^{1}}(-1)$. Therefore we only need to prove this when $n=1$.

In this case $\mathbb{R P}^{1}$ is a semicircle with opposite ends identified as in the picture below:

This semi-circle is parameterized by the coordinate x_{1}. So from now on we will refer to points on this semi-circle with the coordinate x_{1}. The coordinate x_{2} is equal to $\sqrt{1-x_{1}^{2}}$. The region U_{1} is the subset of this semi-circle where $x_{1} \neq 0$. This region is homeomorphic to:

$$
[-1,0) \cup(0,1] / \sim, \quad-1 \sim 1
$$

The region U_{2} is the subset where $x_{2} \neq 0$, which is the region $x_{1} \neq \pm 1$ (i.e. the semi-circle minus the endpoints). Hence this is naturally diffeomorphic to $(-1,1)$.

We have two trivializations $\tau_{1}: \pi_{1}^{-1}\left(U_{1}\right) \longrightarrow U_{1} \times \mathbb{R}$ and $\tau_{2}: \pi_{1}^{-1}\left(U_{1}\right) \longrightarrow U_{2} \times \mathbb{R}$. We have:

$$
\tau_{2} \circ \tau_{1}^{-1}:\left(U_{1} \cap U_{2}\right) \times \mathbb{R} \longrightarrow\left(U_{1} \cap U_{2}\right) \times \mathbb{R}, \quad \tau_{2} \circ \tau_{1}^{-1}\left(x_{1}, y_{1}\right)=\left(x_{1}, \Psi_{12}\left(x_{1}\right) \cdot y_{1}\right)
$$

where $\Psi_{12}\left(x_{1}\right)$ is the 1×1 matrix $\frac{\sqrt{1-x_{1}^{2}}}{x_{1}}$.
This means that V is obtained from

$$
U_{1} \times \mathbb{R} \cong([-1,0) \cup(0,1] / \sim) \times \mathbb{R}
$$

and

$$
U_{2} \times \mathbb{R} \cong(-1,1) \times \mathbb{R}
$$

by gluing the region $(-1,0) \times \mathbb{R} \subset U_{1} \times \mathbb{R}$ with $(-1,0) \times \mathbb{R} \subset U_{2} \times \mathbb{R}$ using a map $\left(x_{1}, y_{1}\right) \xrightarrow{(}$ $\left.x_{1}, \Phi_{12}\left(x_{1}\right) y_{1}\right)$ where $\Phi_{12}\left(x_{1}\right)<0$ is a negative 1×1 matrix and also gluing the region $(0,1) \times \mathbb{R} \subset U_{1} \times \mathbb{R}$ with $(0,1) \times \mathbb{R} \subset U_{2} \times \mathbb{R}$ using a map $\left.\left(x_{1}, y_{1}\right) \xrightarrow{(} x_{1}, \Phi_{12}\left(x_{1}\right) y_{1}\right)$ where $\Phi_{12}\left(x_{1}\right)>0$ is a positive 1×1 matrix. Hence we have the following schematic picture of this gluing:

Hence we get a mobius strip:

Now if $\pi: V \longrightarrow \mathbb{R P}^{1}$ was a trivial bundle then it would have a nowhere zero section. But this is impossible as every section has to be zero somewhere:

Here is an illustrative diagram:

In other words, any section must cross the zero section by the intermediate value theorem.

Euclidean Vector Bundles

Definition 1.23. Let W be a real finite dimensional vector space. Recall that a bilinear form is a linear map $B: W \otimes W \longrightarrow \mathbb{R}$. A quadratic form is a map $Q: W \longrightarrow \mathbb{R}$ satisfying $Q(v)=B(v, v)$ for some bilinear form B.

Note that we can recover the bilinear form B from Q using the formula:

$$
\begin{equation*}
B(v, w)=\frac{1}{2}(Q(v+w)-Q(v)-Q(w)) \tag{1}
\end{equation*}
$$

Definition 1.24. A quadratic form Q is positive definite if $Q(v)>0$ for all $v>0$. Similarly a bilinear form B is positive definite if $Q(v) \equiv B(v, v)>0$ for all $v \neq 0$.

A Euclidean vector bundle is a vector bundle $\pi V \longrightarrow B$ together with a smooth function $Q: V \longrightarrow \mathbb{R}$ whose restriction to each fiber is quadratic and positive definite. The function Q is called a Euclidean norm.

Equivalently by using the equation (1), a Euclidean vector bundle is a vector bundle $\pi: V \longrightarrow B$ together with a smooth function $\mu: V \otimes V \longrightarrow \mathbb{R}$ whose restriction to each fiber is a positive definite bilinear form. The function μ is called a Euclidean metric.

Exercise: show that both definitions of a Euclidean vector bundle are equivalent.
Example 1.25. V is the trivial vector bundle $B \times \mathbb{R}^{k}$ with Euclidean norm $\left(b,\left(x_{1}, \cdots, x_{k}\right)\right) \longrightarrow$ $\sum_{j=1}^{k} x_{j}^{2}$ (or equivalently with the standard Euclidean metric given by the dot product $x_{1} \otimes x_{2} \longrightarrow x_{1} \cdot x_{2}$).
Lemma 1.26. Let $\pi: V \longrightarrow B$ be a trivial vector bundle of rank k and let μ be any Euclidean metric. Then there are sections s_{1}, \cdots, s_{k} which are normal and orthogonal in the sense that:

$$
\mu\left(s_{i}(b) \otimes s_{j}(b)\right)=\delta_{i j}
$$

for all $i, j \in\{1, \cdots, k\}$ and all $b \in B$.

Proof. By Lemma 1.20 we have k sections $s_{1}^{\prime}, \cdots, s_{k}^{\prime}$ so that $s_{1}^{\prime}(b), \cdots, s_{k}^{\prime}(b)$ form a basis for $\pi^{-1}(b)$ for each $b \in B$. We then apply the Gram-Schmidtt process to these sections which results in the sections s_{1}, \cdots, s_{k} that we want.

Exercise: fill in the details.
Exercise: Show, using the above lemma, that a Euclidean vector bundle is equivalently a vector bundle with structure group $S O(k)$ [c.f. Steenrod 1951, 12.9]. (Hint: apply the above lemma to any trivialization $\tau: U \longrightarrow U \times \mathbb{R}^{k}, U \subset B$ giving us a new trivialization by Lemma 1.20.)

