1. VECTOR BUNDLES

Convention: All manifolds here are Hausdorff and paracompact. To make our life easier,
we will assume that all topological spaces are homeomorphic to CW complexes unless stated
otherwise.

The definition of a smooth vector bundle in some sense is similar to the definition of a
smooth manifold except that ‘chart’ is now replaced with ‘trivialization’.

Definition 1.1. A smooth real vector bundle of rank k over a base B is a smooth

surjection 7 : V' — B between smooth manifolds, an open cover (U;);es of M, and homeo-

morphisms 7; : 771 (U;) — U; x R¥ called trivializations satisfying the following properties:

(1) Let my, : U; x R* — U; be the natural projection. Then 7T‘7T—1(Ui) = m; o7;. In other
words, we have the following commutative diagram:

T
() U; x RF
7I-’7r*1(UN‘ /Ui

U;

(2) The transition maps
rio7 (Ui x Uj) x R — (U; x Uj) x R
are smooth maps satisfying:

T; 0 7';1(:3, z) = (x, ®ij(x).2)

where
®;; : U;NU; — GL(R)
is a smooth map.
We will call the maps ®;; : U; N U; — GL(RF) transition data.

Remark 1 Instead of writing 7 : V. — B, (Ui)ies, (7i)ics we will just write 7 : V. — B
for a vector bundle.

Remark 2: Note that we can change the group GL to other groups such as SL(R¥) (matrices
of determinant 1) or O(R¥), orthogonal matrices or GL(n,C) complex n x n matrices where
we identify R¥F 2 C*/2 (if k is even).

Remark 3: If we formally replace R* with a smooth manifold F' and the group GL(n,R)
with a group G and a group homomorphism G — Dif f(F') then we get the definition of a
fiber bundle with structure group G.

Remark 4: Note that the trivializations (7;);es form an atlas on V' and hence uniquely
specify the smooth structure on E. Hence in the above definition, we only need to specify
that V is a set and the formally replace the words ‘smooth surjection” with ‘surjection’.

Remark 5: We can also have that FE,B are topological spaces and all the maps are contin-
uous including the transition maps. Then this is a topological vector bundle.

Exercise: give a definition of a topological vector bundle.

Technically, a smooth real vector bundle of rank k£ has an equivalence class of open covers
and trivializations (just as a manifold really consists of a set with an equivalence class of
charts). Two such sets of open covers (U;)ics, (U})ies and trivializations

(i : 7 HU;) — Uy x RM)jes, (7] : 77 HU)) — Ul x RF)cqr
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associated to these open covers are equivalent if their union satisfies (1) and (2). In other
words,

mlor !t (U x Uy) x R — (U] x Uj) x R¥
are smooth maps satisfying:

7/ 0 T]-_l(.’B, z) = (z, ®ij(2).2)

where
®;;: U NU; — GL(RF)
is a smooth map for all i € S and j € S

Definition 1.2. A trivialization of 7 : V — B over an open set U C B of a smooth
vector bundle as above is a smooth map:

77 (U) — U x RF
satisfying
o L (U;NU) xRF — (U;nU) xRE, 1077 (z,2) = (2, ®i(2))

for some smooth ®; : U; N U — GL(R¥).
In Milnor’s book this is called a local coordinate system.

Example 1.3. The trivial R* bundle over B is the smooth map 7 : B x R¥ — B where
mp is the natural projection map and the open cover is just B and the trivialization 7 is just
the identity map.

Example 1.4. The tangent bundle mrp : TB — B of a manifold B is constructed as
follows:

Here T'B is the set of equivalence classes of smooth maps v : R — B where two such
paths 1,79 are tangent if 71(0) = 72(0) and £ (¢ o (1))=0 = (¥ ©72(t)) =0 for some
chart 1 of B containing 71 (0).

The open cover (U;)ies of B consists of the domains of charts 1; : U; — R¥ on B. The
trivialization 7; : 7= 1(U;) — U; x R¥ is the map 7;(7) = (7(0), 4 (1 0 7)|t=0)-

Vector bundles can be built just from the data ®;; as in Definition 1.1. Note that this is
a very similar procedure to constructing a manifold for a bunch of maps (corresponding to
atlases) and transition functions ‘gluing’ these atlases together.

Constructing vector bundles from transition data: This is called the Fiber bundle
Construction Theorem (in the case of fiber bundles).

Let B be a smooth manifold and (U;);cs an open cover and let

®;;:U;NU; — GL(RY), i,j€8
be smooth maps satisfying the cocycle condition:
CIDij(x)CI)jk(a:) =®Q;p(z) YzelUn U; N Uj.

Then we can construct a vector bundle with associated open cover (U;);cs and transition
data ®;; as follows: Here we define

V= (I_liesUi X ]Rk) / ~

where (u, ) ~ (u, ®;;(x)) for allu € U;NUj, z € RF and all i, j € S. Here 7: V — B sends
(u,z) € U; x R* to u € B.

Exercise: Show that V' is a Hausforff paracompact C*° manifold with atlas given by U; x F'
and then show that 7 : V — B is a vector bundle.



Definition 1.5. A homomorphism between two vector bundles m; : V4 — B, 9 :
Vo — B of rank k over the base B is a smooth map ¥ : V; — V5 so that

(1) The diagram

v v
N /m
B

(2) Any two trivializations

T1:7T1_1(U1)—>U1><]Rk, T2:7T1_1(U2)—>U2><Rk,

%

commutes and

satisfy
moWor L (U NUp) xRY — (U NUs) xRE, 1077 (2, 2) = (x,B(2))
for some smooth ® : Uy N Uy — Hom(R¥).

A isomorphism is a homomorphism ¥ which is a diffeomorphism.
(Ex: Show that it’s inverse is also a vector bundle homomorphism).

Example 1.6. Let 75 : B x R¥ — B be a trivial vector bundle 1.3 Then for any smooth
map ® : B — Hom(RF;R¥), we have a vector bundle homomorphism

U:BxRF — BxRF, U(z,2) = (z,8(2)).
This is an isomorphism if Im(®) C GL(R").

Definition 1.7. A vector subbundle of a vector bundle m : Vo — B is a submanifold
Vi C Vi so that ma|y, : Vi — B is a vector bundle and the inclusion map V; < V3 is a
vector bundle homomorphism.

Definition 1.8. If ¢ : B| — B is a smooth map and 7 : Vj; — B;, mo: Vo — Bj are
vector bundles of rank k then a smooth map ¥ : V; — V5 is a bundle map covering ¢ if

vy

“l , lm

B1 — BQ
1) commutes and

(2) Any two trivializations
o WU) — Uy xRY, i H(U) — Up x R,
satisfy
moWor L (UNUz) xRY — (U1 NUL) xRE,  mor iz, 2) = (z,8(2))
for some smooth ® : Uy N Uy — Hom(R¥).

Again this is an ismorphism if ¥ is a diffeomorphism (exercise: show that in this case, ¢
is a diffeomorphism and ¥ has an inverse bundle map covering ¢~1)

Definition 1.9. Let f : Bj — By be a smooth map and let m : Vo — By be a smooth
map. Then the pullback bundle f*mo : f*Vo — By is the bundle is defined as follows:

fVa={(b,z) € Bt x Vo | f(b) = ma(z) }
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and
frma(b,x) = x.

(Excercise check that this is a vector bundle).

We have a natural bundle map
U: Vo — Vo, V(bx)==zx
covering f.
Definition 1.10. If By C Bs is a submanifold and w5 : V5 — By is a submanifold then we
define the restriction of m to Bj
7'('2|B1 : V2|31 — Bl
as
molp, = 'm,  Valp, =V
where ¢ : By < By is the inclusion map.

We also have other ways of producing now bundles from old ones.

Definition 1.11. Let 7 : V — B, 7’ :V’ — B be vector bundles. We define the direct
sum
T em: Vi Vo — B

to be the bundle whose fiber at b € B is the direct sum of the fibers of 71 and 7o at b.

More precisely: We suppose that our vector bundle m has transition data ®;; : U; N
Uy — GL(R*) coming from an open cover (U;);cs and similarly 7/ has transition data
o UINU; — G L(R¥) coming from an open cover (U!);cs. Since the bases of these these
vector bundles are the same, we can replace our open covers with refinements so that S = 5’
and U/ = U, for all i € S = S’. (For instance we can consider the refined open cover (U; N

UJ/')Z'GS,jGS’ with transition data ®;, ;) (is,j2) = (I)ili2‘U¢1ﬁU]’~10U¢20U;2 for all (i1, ja2), (i2,j2) €
S x S’ which defines 7 and we can do the same for 7’)
Then the transition data for the direct sum is just

Oy © O U;NU; — GL(RY) @ GLRY) ¢ GLRMF).
Definition 1.12. We can define the tensor product T ® 7’ : V ® V' — B of these vector
bundles in a similar way by using the transition data:
Oy @ P} U;NU; — GL(RF @ R = RF1k2)

where (I)ij X @;j(ml ® {L‘Q) = CDij(l'l) X (I);j(xg)

The Dual 7* : V* — B has transition data @7, : U; N U; — GL((R¥)*).

Similarly Hom(V7, V) can be defined with transition data:

ofom . U;NU — GL(Hom(R*,RY),  @Hom(2).(¢) = ®};(x) 0 ¢ 0 ().

Orasm*@n : V*®@V' — B.

Exercise: Define the wedge product AV in a similar way.

Definition 1.13. Let 7 : V. — B be a vector bundle of dimension k and V' C V a vector
subbundle of dimension #’. The quotient bundle 7y : V/V' — B is defined as follows:

Let 7' = w|y. We wish to construct these so that each fiber over b € B is the quotient
vector space 7 1(b)/(n’)~1(b). First of all we define this as a set and then we specify the
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trivializations. We define V/V’' = V/ ~ where x ~ 2’ if and only if  and 2’ are in the same
fiber 771(b) of 7 and [z] = [+'] € 7~ (b)/(x') " (b). We define my 1 to be the map sending
[x] to m(z).

We will now construct the trivializations of my /1. Choose a fine enough open cover (Ui)ies
with trivializations 7; : 7~ 1(U;) — U; x R¥ so that there is a fixed subspace H; C R of
dimension k — k' so that 7y, (7;((7')"*(z))) C R¥ is a subspace of R* transverse to H; where
my, Ui X Rk — U; is the natural projection.

For each i € S choose an isomorphism ¢; : RF JH; = R*. Define I : RF — R* be the
composition

R* - R¥/H; —s R¥.
Now we define
Ti i myp(U) — Ui xRY, - Fi([z]) = T(ri(x)).
Exercise: show these maps are well defined and satisfy (1) and (2) from Definition 1.1.

Definition 1.14. Let B C B’ is a submanifold. The normal bundle of B inside B’ is the
vector bundle (T'B’|g)/TB.

Example 1.15. real projective space: Let S” = {x € R"™ : |z| = 1 } be the unit
sphere. We define
RP"=85"/~, z~2a iff =42
We will write elements of RP™ as {£x} where x € S™.
Define
V = {(£z,y) € RP" x R"" . ¢ =tz for some t € R.}.

Here is a picture of this situation in the case n = 1:

We have a line bundle called Oppn(—1) defined as:
m: B — RP", n(tz,y)=*=z.
This has trivializations defined as follows: We define S = {0,--- ,n}. We define
Ui CRP", U; ={£(zo, - ,xn) € RP" : x; # 0}.
We have an associated trivialization
o WU — U xR, (£, (Yo, ,yn)) = (£, 1)

where sgn(z;) = x;/|x;il.
Exercise: Check that this is a well defined map and a bijection.
We have that -
Tj© Tiil(:l:(l‘ov T 7xn)7 yz) = ;Jyl
(2
Hence 7; satisfies (1) and (2) from Definition 1.1 where ®;;(%(zq, -+ ,z,)) = 2L.



We also have other line bundles Ogpn(n) = Ogpn (—1)®" if n > 0 and Ogpn(0) = RP" x R
and Ogpn(—n) = (0(—1)*)®".

Definition 1.16. A vector bundle 7 : V. — B is trivial if it is isomorphic to B x R*. In
other words, there is a bundle isomorphism ¥ : V — B x RF. Such a bundle isomorphism
is called a global trivialization.

Lemma 1.17. Suppose that 7 : V' — B is a trivial bundle. Then for any smooth map
f: B — B, we have that f*r: f*V — B’ is also trivial.

Proof. First of all we have a trivialization 7 : V — B x R¥. Recall that
ffv={V,z)e B xV : fV)=mx(x) }.
Hence we have a natural bundle homomorphism
U: 'V —V, Vb ) =2
Let g : B x R¥ be the natural projection map. Define
TV — B xRE, AW, x) = W, mr(r(TY, 2)))).

Exercise: show that 7/ is a trivialization of f*m. O
We have the following immediate corollary (due to the fact that the restriction map is
pullback by the inclusion map)

Corollary 1.18. Suppose that 7 : V — B is a trivial bundle and B’ C B is a submanifold.
Then 7|p/ : V|g: — B’ is a trivial bundle.

We wish to construct some non-trivial bundles. Before we do this we need another defini-
tion:

Definition 1.19. Let 7w : V — B be a vector bundle. A section or cross-section is a
smooth map s : B — V satisfying 7 o s = idp.

The zero section is the section sending b € B to 0 in the vector space 7 !(b)(in other
words, it is equal to 0 when we compose it with any trivialization 7).

Here is a picture of the image of a section in the case that V =R xR, B =R and 7 is the
projection map to the first factor:

image of a section - __
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Note that a section s is uniquely determined by its image in V. This is because the image of
any section is a smooth submanifold B C V so that 7|5 is a diffeomorphism. And conversely
if we have any such submanifold, then we have a section s : B — V by defining s(b) to be
the unique intersection point 7~ 1(b) N B.

Lemma 1.20. Let 7 : V — B be a vector bundle of rank k. Then 7 is a trivial vector

bundle if and only if k¥ non-zero sections si,--- , s so that s1(b),---,sk(b) form a basis of
771(b) for all b € B.

Proof. Suppose that 7: V — B x R is a trivialization. Fix a basis e, - - - , ey for R¥. Then
our sections are s;(b) = 771(b, ¢;) for each j € {1, ,k}. This have the properties we want.

Conversely, suppose that we have sections sy, -, sk so that s1(b),- -, si(b) form a basis
of 771(b) for all b € B. Then we define our trivialization 7 as follows. For each x € 7=1(b)
there is a unique (ay(x),---,ag(x)) € R* so that x = Z?Zl aj(x)sj(m(x)). The functions
ay(x), -+, ag(x) smoothly vary as x smoothly varies due to the fact that the sections are
smooth. We define 7(z) = (w(z), (a1 (), -+, ag(x)). This is a trivialization of 7. O

Example 1.21. T'S! is a trivial bundle because of the following picture:

A manifold is called parallelizable if its tangent bundle is trivial.

One can also show that the three sphere is parallelizable. Here S3 C R* is the unit
sphere and so 7'S® ¢ TR* = R* x R*. The three sections forming a basis for each fiber are:
si(z) = (z,3;(x)) where

51(w) = (—x2, 21, =74, 73),
52(x> = (—.’E3,I’4,JJ1, _xQ)v

§3(§C> = (_x47 —T3, T2, 3’:1).

These formulas come from the quatermionic multiplication on R* [Steenrod 1951, section
8.5].

Lemma 1.22. The bundle Ogpn(—1) from Example 1.15 is not trivial.
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Proof. Let m: V — RP" be the bundle O(—1) as constructed in Example 1.15.
Let

Lg - ]R]P)k — RP”, Lk((ﬂ:(x(), s ,.CEk)) = (LU(), s Tk, 0,0 - ,0)

be the natural embedding. In particular RP' C RP" is a submanifold. Therefore it is sufficient
to show that 7|gp1 is not trivial by Corollary 1.18. By construction, 7|gp: is isomorphic to
0,,, (—1). Therefore we only need to prove this when n = 1.

In this case RP! is a semicircle with opposite ends identified as in the picture below:
45

I

This semi-circle is parameterized by the coordinate x1. So from now on we will refer to
points on this semi-circle with the coordinate z;. The coordinate x5 is equal to /1 — l’%
The region Uj is the subset of this semi-circle where x; # 0. This region is homeomorphic
to:

[—1,0) U (0,1]/ ~, —1~1.

The region Us is the subset where x # 0, which is the region z; # £1 (i.e. the semi-circle
minus the endpoints). Hence this is naturally diffeomorphic to (—1,1).

We have two trivializations 7 : Wfl(Ul) — Uy xR and 7 : Wfl(Ul) — U x R. We
have:

T OTf1 (U1NUy) xR — (U NU2) xR, 1 OTfl(xl,yl) = (1, ¥12(x1).y1)

2
where Wio(z1) is the 1 x 1 matrix 7%
This means that V is obtained from

Uy xR=([-1,0)U(0,1]/ ~) xR

and

U xR=(-1,1) xR

by gluing the region (—1,0) x R C U; x R with (—1,0) xR C Uy x R using a map (1, y1) 4
21, P12(x1)y1) where ®19(x1) < 0 is a negative 1 x 1 matrix and also gluing the region
(0,1) x R Cc Uy x R with (0,1) x R C Uy x R using a map (x1,y1) 4 x1, P12(z1)y1) where

®19(x1) > 0 is a positive 1 x 1 matrix. Hence we have the following schematic picture of this
gluing:
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Now if 7 : V — RP! was a trivial bundle then it would have a nowhere zero section. But

this is impossible as every section has to be zero somewhere:

Here is an illustrative diagram:
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graph of a smooth section

In other words, any section must cross the zero section by the intermediate value theorem.
O
Euclidean Vector Bundles

Definition 1.23. Let W be a real finite dimensional vector space. Recall that a bilinear
form is a linear map B: W@ W — R. A quadratic form is a map @) : W — R satisfying
Q(v) = B(v,v) for some bilinear form B.

Note that we can recover the bilinear form B from () using the formula:

Blo,w) = 5(Q(v +w) ~ Qv) ~ Qw)) 1)
Definition 1.24. A quadratic form @ is positive definite if Q(v) > 0 for all v > 0.
Similarly a bilinear form B is positive definite if Q(v) = B(v,v) > 0 for all v # 0.

A Euclidean vector bundle is a vector bundle 7V — B together with a smooth
function @ : V' — R whose restriction to each fiber is quadratic and positive definite. The
function @ is called a Euclidean norm.

Equivalently by using the equation (1), a Euclidean vector bundle is a vector bundle
m:V — B together with a smooth function p: V@V — R whose restriction to each fiber
is a positive definite bilinear form. The function p is called a Euclidean metric.

Exercise: show that both definitions of a Euclidean vector bundle are equivalent.

Example 1.25. V is the trivial vector bundle B xR¥ with Euclidean norm (b, (z1,--- ,x3)) —
Zle CL‘]Q (or equivalently with the standard Euclidean metric given by the dot product
1 & xo — 1‘1.1'2).
Lemma 1.26. Let 7 : V — B be a trivial vector bundle of rank £ and let p be any
Euclidean metric. Then there are sections si,- - , s which are normal and orthogonal in the
sense that:

p(si(b) @ s;(b)) = di;
forall 7,5 € {1,--- ,k} and all b € B.
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Proof. By Lemma 1.20 we have k sections s/, , s}, so that s{(b),--- , s} (b) form a basis for
771(b) for each b € B. We then apply the Gram-Schmidtt process to these sections which
results in the sections s, -+, s that we want.

Exercise: fill in the details. ]

Exercise: Show, using the above lemma, that a Euclidean vector bundle is equivalently a
vector bundle with structure group SO(k) [c.f. Steenrod 1951, 12.9]. (Hint: apply the above
lemma to any trivialization 7 : U — U x R*¥, U C B giving us a new trivialization by
Lemma 1.20. )



