1. Computations in a smooth manifold

Definition 1.1. Let M be a smooth submanifold of a smooth manifold X. Let $\mathcal{N}_{X} M \equiv$ $\left.T X\right|_{M} / T M$ be the normal bundle of M in X. A tubular neighborhood of M in X is a smooth map $\Psi: N \longrightarrow X$ which is a diffeomorphism onto its image where
(1) $N \subset \mathcal{N}_{X} M$ is an open set containing M,
(2) $\Psi(x)=x$ for all $x \in M$ where M is identified with the zero section.
(3) Let $Q:\left.T X\right|_{M} \longrightarrow \mathcal{N}_{X} M$ be the natural quotient map. For all $v \in \mathcal{N}_{X} M$,

$$
Q\left(D \Psi\left(\left.\frac{d}{d t}(t v)\right|_{t=0}\right)\right)=v .
$$

In other words, the derivative of Ψ along M is the identity map.
Theorem 1.2. Every smooth submanifold $M \subset X$ has a tubular neighborhood.
Proof. It is sufficient for us to construct a map $\Psi: \mathcal{N}_{X} M \longrightarrow X$ so that properties (2) and (3) hold. The implicit function theorem then tells us that for some open $N \subset \mathcal{N}_{X} M$ containing M, we have that $\left.\Psi\right|_{N}$ is an embedding and hence a tubular neighborhood.

Choose a complete metric g on X. Let $\left.\mathcal{N}^{\perp} \subset T X\right|_{M}$ be the set of vectors which are orthogonal to $T M$. I.e.

$$
\left.\mathcal{N}^{\perp} \equiv\left\{\left.V \in T_{x} X\right|_{M}: x \in M, g(V, W)=0 \forall W \in T_{x} M\right\}\right)
$$

This is a subbundle of $\left.T X\right|_{M}$ and the natural quotient map $\left.Q\right|_{\mathcal{N}^{\perp}}: \mathcal{N}^{\perp} \longrightarrow \mathcal{N}_{X} M$ is a bundle isomorphism. Let $Q^{\prime}: \mathcal{N}_{X} M \longrightarrow \mathcal{N}^{\perp}$ be the inverse of this bundle isomorphism.

Let Exp:TX $\longrightarrow X$ be the exponential map with respect to g. Define

$$
\Psi: \mathcal{N}_{X} M \longrightarrow X, \quad \Psi(v) \equiv \operatorname{Exp} \circ Q^{\prime}
$$

Since $\operatorname{DExp}\left(\left.\frac{d}{d t}(w)\right|_{t=0}\right)=w$ for all $w \in T X$, properties (2) and (3) hold.

Corollary 1.3. $H^{*}(X, X-M ; \Lambda)=H^{*}\left(\mathcal{N}_{X} M, \mathcal{N}_{X} M-M ; \Lambda\right)$.
Proof. . Excision tells us that both of these groups are isomorphic to $H^{*}(N, N-M ; \Lambda)=$ $H^{*}(\Psi(N), \Psi(N)-M, \Lambda)$.

The above isomorphism does not depend on the choice of tubular neighborhood Ψ. This is because if we had another map Ψ^{\prime} then we can smoothly interpolate between Ψ and Ψ^{\prime} in the following way. Let g be a complete metric and let Exp:TX $\longrightarrow X$ be the corresponding exponential map. There is a small open set

$$
T^{\delta} X \equiv\left\{V \in T_{x} X: x \in X, g(V, V)<\delta(x)\right\} \subset T X
$$

where $\delta: X \longrightarrow(0, \infty)$ is smooth and so that $\left.E x p\right|_{T_{x} X \cap T^{\delta} X}$ is a diffeomorphism onto its image by the implicit function theorem. By property (3) of Ψ and Ψ^{\prime}, we have a small neighborhood $N^{\prime \prime} \subset \mathcal{N}_{X} M$ containing M so that the distance between $\Psi(x)$ and $\Psi^{\prime}(x)$ is less than $\delta(\Psi(x))$. For each $v \in \mathcal{N}_{X} M$, define

$$
L_{v}: T_{\Psi(v)} X \cap T^{\delta} X \longrightarrow X,\left.\quad L_{v} \equiv E x p\right|_{T_{\Psi(v)} X \cap T^{\delta} X}
$$

For each $t \in[0,1]$, define

$$
\Psi_{t}: N^{\prime \prime} \longrightarrow X, \quad \Psi_{t}(v) \equiv \operatorname{Exp}\left(t L_{v}^{-1}\left(\Psi^{\prime}(v)\right)\right)
$$

Then Ψ_{t} satisfies (2) and (3) for all $t \in[0,1]$. Hence there is a smaller open neighborhood $N^{\prime \prime \prime} \subset \mathcal{N}_{X} M$ containing M so that $\left.\Psi_{t}\right|_{N^{\prime \prime \prime}}$ is a tubular neighborhood for all $t \in[0,1]$. Therefore Ψ_{t} is a smooth family of tubular neighborhoods joining $\left.\Psi_{t}\right|_{N^{\prime \prime \prime}}$ and $\left.\Psi_{t}^{\prime}\right|_{N^{\prime \prime \prime}}$.

Therefore the maps in Corollary 1.3 do not depend on the choice of tubular neighborhood.

Definition 1.4. Let $M \subset X$ be a smooth submanifold of codimension k. We define $\widetilde{e}^{\prime}(M, X ; \mathbb{Z} / 2 \mathbb{Z})$ to be the image of the unoriented fundamental class

$$
\widetilde{e}\left(\mathcal{N}_{X} M ; \mathbb{Z} / 2 \mathbb{Z}\right) \in H^{k}\left(\mathcal{N}_{X} M, M ; \mathbb{Z} / 2 \mathbb{Z}\right)
$$

under the isomorphism

$$
H^{k}(X, M ; \mathbb{Z} / 2 \mathbb{Z}) \cong H^{k}\left(\mathcal{N}_{X} M, M ; \mathbb{Z} / 2 \mathbb{Z}\right)
$$

We call this the unoriented fundamental cohomology class of $M \subset X$.
If $\mathcal{N}_{X} M$ is an oriented vector bundle then we define

$$
\tilde{e}^{\prime}\left(\mathcal{N}_{X} M\right) \in H^{k}(X, M ; \mathbb{Z})
$$

to be the image of the fundamental class

$$
\widetilde{e}\left(\mathcal{N}_{X} M\right) \in H^{k}\left(\mathcal{N}_{X} M, M ; \mathbb{Z}\right)
$$

under the isomorphism

$$
H^{k}(X, M ; \mathbb{Z}) \cong H^{k}\left(\mathcal{N}_{X} M, M ; \mathbb{Z}\right)
$$

We call this the fundamental cohomology class of $M \subset X$.
Theorem 1.5. Let $M \subset X$ be a smooth submanifold of codimension k. The image of $\widetilde{e}^{\prime}(M, X ; \mathbb{Z} / 2 \mathbb{Z}) \in H^{k}(X, M ; \mathbb{Z} / 2 \mathbb{Z})$ under the composition:

$$
H^{k}(X, M ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{k}(X ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{k}(M ; \mathbb{Z} / 2 \mathbb{Z})
$$

is $w_{k}\left(\mathcal{N}_{X} M\right)=e\left(\mathcal{N}_{X} M ; \mathbb{Z} / 2 \mathbb{Z}\right)$.
If $\mathcal{N}_{X} M$ is oriented then the image of $\tilde{e}^{\prime}(M, X) \in H^{k}(X, M ; \mathbb{Z})$ under the composition

$$
H^{k}(X, M ; \mathbb{Z}) \longrightarrow H^{k}(X ; \mathbb{Z}) \longrightarrow H^{k}(M ; \mathbb{Z})
$$

is the Euler class $e\left(\mathcal{N}_{X} M\right)$ of $\mathcal{N}_{X} M$.
Proof. Let $\Psi: N \longrightarrow X$ be a tubular neighborhood of M inside X. Let \mathbb{F} be equal to \mathbb{Z} or $\mathbb{Z} / 2 \mathbb{Z}$. Our theorem now follows by looking at the commutative diagram:

Definition 1.6. Let $M \subset X$ be a smooth submanifold of X of codimension k. The image of $\widetilde{e}^{\prime}(M, X ; \mathbb{Z} / 2 \mathbb{Z}) \in H^{k}(M, X ; \mathbb{Z} / 2 \mathbb{Z})$ inside $H^{k}(X ; \mathbb{Z} / 2 \mathbb{Z})$ is called the dual cohomology class to the submanifold M in X.

If $\mathcal{N}_{X} M$ is oriented then the image of $\tilde{e}^{\prime}(M, X) \in H^{k}(M, X ; \mathbb{Z})$ inside $H^{k}(X ; \mathbb{Z})$ is also called the dual cohomology class to the submanifold M in X.

Corollary 1.7. If $M \subset \mathbb{R}^{k}$ is a smooth n-dimensional submanifold of \mathbb{R}^{n+k} where $n>0$. Then $w_{k}\left(\mathcal{N}_{\mathbb{R}^{n+k}} M\right)=0$.

If $\mathcal{N}_{\mathbb{R}^{n+k}} M$ is oriented then the Euler class of the normal bundle vanishes (I.e. $e\left(\mathcal{N}_{\mathbb{R}^{n+k}} M\right)=$ $0)$.

Proof. This is because these classes are the image of the dual cohomology class to M inside \mathbb{R}^{n+k} which must be zero since $H^{n}\left(\mathbb{R}^{n+k}\right)=0$.

As a result, if a smooth n-manifold M can be smoothly embedded in \mathbb{R}^{n+k} then $\bar{w}_{k}(T M)=$ 0 . Compare this with our earlier result which said that if M was immersed into \mathbb{R}^{n+k} then $\bar{w}_{j}(T M)=0$ for all $j>k$.

Recall that if $n=2^{r}$ then

$$
\bar{w}\left(\mathbb{R}^{n}\right)=1+a+\cdots+a^{n-1}
$$

Hence $\mathbb{R P}^{n}$ cannot be embedded into $\mathbb{R}^{2 n-1}$. Note that it can be immersed into $\mathbb{R}^{2 n-1}$. Hence we cannot weaken the above theorem so that M is an immersion. Also Whitney showed that every smooth n-manifold can be smoothly embedded into $\mathbb{R}^{2 n}$. As a result this is the most efficient embedding theorem.

It is essential that M is a closed submanifold of M. For instance the Möbius band B can be embedded in \mathbb{R}^{3} in a non-closed way. But it cannot be embedded into \mathbb{R}^{3} as a closed submanifold since $\bar{w}_{1}(T B) \neq 0$.

It would be nice to a have a slightly more geometric interpretation of the dual cohomology class of a smooth submanifold $M \subset X$ of a manifold X.

Recall that the cap product is defined (on the chain level) as follows:

$$
\begin{gathered}
\cap: C^{i}(X) \otimes C_{j}(X) \longrightarrow C_{j-i}(X), \\
\left.b \cap \sigma=(-1)^{i(j-i)} b(\text { back } i \text { face of } \sigma) . \text { (front } j-i \text { face of } b\right) .
\end{gathered}
$$

If $\mu_{M} \in H_{n}(X)$ is the fundamental class of a compact n-manifold X then Poincaré duality says that

$$
D_{X}: H^{i}(X) \longrightarrow H_{n-i}(X), \quad D_{M}(b) \equiv b \cap \mu_{M}
$$

is an isomorphism.
Definition 1.8. If $M \subset X$ is a compact submanifold of a manifold X of dimension k then we write $[M] \in H_{k}(X)$ to be the image of the fundamental class $\mu_{M} \in H_{k}(M)$ in X.

Recall that an orientation on a manifold M is a choice of class $\mu_{x} \in H_{n}(M, M-x ; \mathbb{Z})$ for each $x \in M$ so that for all $x \in M$ there is a neighborhood $N_{x} \subset M$ of x and a class $\mu_{N} \in H_{n}(M, M-N ; \mathbb{Z})$ whose restriction to $H_{n}(M, M-y ; \mathbb{Z})$ is μ_{y} for all $y \in M$.

Lemma 1.9. There is a natural 1-1 correspondence between orientations on a manifold M and orientations on its tangent bundle.

Proof. We will show the correspondence between orientations on M and homological orientations on $T M$. This is done using the exponential map $E x p: T M \longrightarrow M$ with respect to some complete metric on M. Let $\nu_{x} \in H_{n}(T M, T M-0 ; \mathbb{Z})$ be a homological orientation on $T M$. Then we also have corresponding neighborhoods N_{x} of x and classes $\nu_{N_{x}} \in H_{n}\left(T N_{x} ; T N_{x}-N_{x} ; \mathbb{Z}\right)$ We define $\mu_{x} \equiv \operatorname{Exp}_{*}\left(\mu_{x}\right)$ and $\mu_{N_{x}} \equiv \operatorname{Exp}_{*}\left(\mu_{N_{x}}\right)$. This gives us our 1-1 correspondence.

Lemma 1.10. Let $M \subset X$ be an oriented smooth submanifold of an oriented compact smooth manifold X. Then $\mathcal{N}_{X} M$ is oriented in a natural way since $\mathcal{N}_{X} M \oplus T M=\left.T X\right|_{M}$ and $T M$ and $T X$ are oriented by the previous lemma. Then $D_{X}(e(M, X ; \mathbb{Z}))=[M]$. I.e. the dual cohomology class of M is Poincaré dual to the fundamental class of M inside X.

Proof. Let $n=\operatorname{dim}(X), k=\operatorname{dim}(M)$. Let $\Psi: N \longrightarrow X, N \subset \mathcal{N}_{X}$ be a tubular neighborhood of M in X. Recall that for any oriented k-manifold A (not necessarily compact) with orientation $\mu_{x}^{A} \in H_{k}(A, A-x ; \mathbb{Z})$ we can find classes $\mu_{B}^{A} \in H_{k}(A, A-B ; \mathbb{Z})$ for any relatively compact set $B \subset A$ whose restriction to $H_{k}(A, A-x ; \mathbb{Z})$ is the orientation μ_{x} for all $x \in B$.

Let $p: \mathcal{N}_{X} M \longrightarrow M$ be the natural projection map. Note that $\mathcal{N}_{X} M$ is an oriented manifold since $\mathcal{N}_{X} M$ is oriented as a vector bundle and hence the pullback $p^{*} \mathcal{N}_{X} M$ is oriented, and hence $T \mathcal{N}_{X} M \cong\left(p^{*} \mathcal{N}_{X} M \oplus p^{*} T M\right)$ is oriented. Therefore we have natural classes $\mu_{M}^{N} \in$ $H_{n}(N, N-M ; \mathbb{Z})$ and $\mu_{M}^{\mathcal{N}_{X} M} \in H_{n}\left(\mathcal{N}_{X}, \mathcal{N}_{X}-M ; \mathbb{Z}\right)$. The image of $\mu_{M}^{\mathcal{N}_{X} M}$ in $H_{n}(N ; N-M ; \mathbb{Z})$ is μ_{M}^{N}. The class μ_{M}^{N} is the image of the fundamental class $\mu_{M}^{M} \in H_{n}(M ; \mathbb{Z})$ of M under the natural map

$$
H_{k}(M ; \mathbb{Z}) \longrightarrow H_{n}(X ; X-M ; \mathbb{Z}) \xrightarrow{\Psi_{*}^{-1}} H_{n}(N ; N-M ; \mathbb{Z}) .
$$

Therefore it is sufficient for us to show that $\widetilde{e}\left(\mathcal{N}_{X} M\right) \cap \mu_{M}^{\mathcal{N}_{X} M}$ is equal to the image of the fundamental class $\mu_{M} \in H_{k}(M ; \mathbb{Z})$ of M inside $\mathcal{N}_{X} M$. Let $i_{M} \in H_{k}\left(\mathcal{N}_{X} M ; \mathbb{Z}\right)$ be this image.

Let $\eta_{x} \in H^{n}(M, M-x ; \mathbb{Z})$ be the unique class satisfying $\eta_{x}\left(\mu_{x}^{M}\right)=1$ for all $x \in M$. Let $\widetilde{\eta}_{x} \in H^{n}\left(\mathcal{N}_{X} M, \mathcal{N}_{X} M-p^{-1}(x) ; \mathbb{Z}\right)$ be equal to $p^{*} \eta_{x}$ for all $x \in X$. Now i_{M} is uniquely determined by the property that $\widetilde{\eta}_{x}\left(i_{M}\right)=1$ for all $x \in M$. Therefore it is sufficient for us to show that $\widetilde{\eta}_{x}\left(\widetilde{e}\left(\mathcal{N}_{X} M\right) \cap \mu_{M}^{\mathcal{N}_{X} M}\right)=1$ for all $x \in M$. This is equal to $\left(\widetilde{\eta}_{x} \cup \widetilde{e}\left(\mathcal{N}_{X}\right)\right)\left(\mu_{M}^{\mathcal{N}_{X}}\right)$ for all $x \in M$.

Let $\nu_{i} \in H^{i}\left(\mathbb{R}^{i}, \mathbb{R}^{i}-0 ; \mathbb{Z}\right), \mu_{i} \in H_{i}\left(\mathbb{R}^{i}, \mathbb{R}^{i}-0 ; \mathbb{Z}\right)$ be the natural generators satisfying $\nu_{i}\left(\mu_{i}\right)=1$ for all $i \in \mathbb{N}$.

Choose a small neighborhood U of x where $\mathcal{N}_{X} M$ has a trivialization $\tau:\left.\mathcal{N}_{X} M\right|_{U} \longrightarrow$ $U \times \mathbb{R}^{n-k}$. We identify U with \mathbb{R}^{k} so that the orientations coincide. Then $\left(\tau^{-1}\right)^{*} \widetilde{e}\left(\mathcal{N}_{X} M\right)$ is equal to $\widetilde{e}\left(U \times \mathbb{R}^{n-m}\right)$ which in turn is equal to $p r_{2}^{*} \nu^{n-k}$ where $p r_{2}: U \times \mathbb{R}^{n-k} \longrightarrow \mathbb{R}^{n-k}$ is the natural projection map. Also $\left(\tau^{-1}\right)^{*} \widetilde{\nu}_{x}=p r_{1}^{*} \nu^{k}$ and

$$
\tau_{*} \mu_{M}^{\mathcal{N}_{X} M}=\mu_{n} \in H_{n}\left(U \times \mathbb{R}^{n-k}, U \times \mathbb{R}^{n-k}-\tau(x)\right)=H_{n}\left(\mathbb{R}^{k} \times \mathbb{R}^{n-k}, \mathbb{R}^{k} \times \mathbb{R}^{n-k}-0\right)
$$

Hence: $\left(\tau^{-1}\right)^{*}\left(\widetilde{\eta}_{x} \cup\left(\tau^{-1}\right)^{*} \widetilde{e}\left(\mathcal{N}_{X}\right)\right)\left(\tau_{*} \mu_{M}^{\mathcal{N}_{X}}\right)=1$ and so $\left(\widetilde{\eta}_{x} \cup \widetilde{e}\left(\mathcal{N}_{X}\right)\right)\left(\mu_{M}^{\mathcal{N}_{X}}\right)$ for all $x \in M$.

Lemma 1.11. Let $M \subset X$ be a smooth closed submanifold of a manifold X. Then there is a complete metric on X making M into a totally geodesic submanifold. (I.e. all geodesics starting in M and tangent to M at their initial point are contained inside M).

Proof. (Sketch) Let g be a complete metric on X. Let $\Psi: N \longrightarrow X$ be a tubular neighborhood of M. The bundle

$$
\mathcal{N}_{X} M=T M^{\perp} \equiv\left\{V \in T_{x} X: x \in M, g(W, V)=0 \quad \forall W \in T_{x} X\right\}
$$

has a natural metric induced by g. Therefore it is an $S O(n-k)$ bundle where $n=\operatorname{dim}(X)$ and $k=\operatorname{dim}(M)$. Therefore it admits a natural $S O(n-k)$ action. Shrink N so that it is invariant under this $S O(n-k)$ action. Now choose a new metric \widetilde{g} so that \widetilde{g} is invariant under the natural $S O(n-k)$ action on $\Psi(N)$). To extend g beyond this neighborhood of M, you might need to shrink N slightly.

To show that M is totally geodesic, it is sufficient to show that for any two sufficiently close points p_{1}, p_{2} on M, the unique shortest geodesic passing through p_{1} and p_{2} is contained inside M.

If p_{1} is close enough to p_{2}, one can assume that any such geodesic is contained inside $\Psi(N)$. If this geodesic γ was not contained inside M, then any element $A \in S O(n-k)$ would push forward this geodesic to a new one $A_{*}(\gamma)$. But this is impossible since there is a unique shortest such geodesic. Contradiction. Hence M is totally geodesic.

Corollary 1.12. Let $M_{1}, M_{2} \subset X$ be smooth transverse closed submanifolds so that $\mathcal{N}_{X} M_{1}$ is oriented. Then there is a tubular neighborhood $\Psi: N \longrightarrow X$ of M_{1} so that $\left.\Psi\right|_{M_{1} \cap M_{2}}$: $\left.N\right|_{M_{1} \cap M_{2}} \longrightarrow M_{2}$ is a tubular neighborhood of $M_{1} \cap M_{2}$ inside M_{2}.

Proof. Choose a metric making M_{2} totally geodesic. Then $\mathcal{N}_{X} M_{1}=T M_{1}^{\perp}$ (the set of vectors orthogonal to $T_{M_{1}}$). Then our regularization comes from the exponential map restricted to $T M_{1}^{\perp}$.
Lemma 1.13. Let $M_{1}, M_{2} \subset X$ be two closed smooth submanifolds of a smooth manifold X that intersect transversely. The $\left.e\left(M_{1}, X\right)\right|_{M_{2}}=e\left(M_{1} \cap M_{2}, M_{2}\right)$.
Proof. Choose a tubular neighborhood $\Psi: N \longrightarrow X$ of M_{1} as in the previous corollary. Now $\left.\widetilde{e}\left(\mathcal{N}_{X} M_{1}\right)\right|_{M_{1} \cap M_{2}}=\widetilde{e}\left(\left.\mathcal{N}_{X} M_{1}\right|_{M_{1} \cap M_{1}}\right)$ since these classes are uniquely determined by the restrictions to the fibers $\left(\pi_{\mathcal{N}_{X} M_{1}}^{-1}(x), \pi_{\mathcal{N}_{X} M_{1}}^{-1}(x)-0\right)$. Since $\left.\mathcal{N}_{X} M_{1}\right|_{M_{1} \cap M_{2}}$ is isomorphic to $\mathcal{N}_{M_{2}}\left(M_{1} \cap M_{2}\right)$, we then get $\widetilde{e}\left(\left.\mathcal{N}_{X} M_{1}\right|_{M_{1} \cap M_{1}}\right)=\widetilde{e}\left(\mathcal{N}_{M_{2}}\left(M_{1} \cap M_{2}\right)\right)$. Since:

$$
H^{*}\left(X, X-M_{1} ; Z\right) \xrightarrow{\Psi^{*}} H^{*}\left(N, N-M_{1} ; Z\right)
$$

$H^{*}\left(M_{2}, X-\left(M_{1} \cap M_{2}\right) ; Z\right) \quad \stackrel{\Psi^{*}}{\longrightarrow} H^{*}\left(\left.N\right|_{M_{1} \cap M_{2}},\left.N\right|_{M_{1} \cap M_{2}}-\left(M_{1} \cap M_{2}\right) ; Z\right)$
commutes, we then get our result.
Lemma 1.14. Let $\pi: E \longrightarrow B$ be a smooth oriented vector bundle over an oriented base B. Let s be a smooth section of E which is transverse to 0 . Then $e(E)$ is the dual cohomology class of the oriented submanifold $s^{-1}(0)$. Hence $e(E)$ is Poincaré dual to $s^{-1}(0)$.

Proof. Since E is an oriented vector bundle with oriented base, we get that E is naturally an oriented manifold. By definition, $\widetilde{e}(E)$ is the dual cohomology class of $B \subset E$. The oriented submanifold $s(B)$ is smoothly isotopic to B via the smooth family of embeddings $t s: B \longrightarrow E, t \in[0,1]$. Hence $\widetilde{e}(E)$ is also the dual cohomology class of $s(B)$. Therefore by the previous lemma, $e(E)$ is the dual cohomology class of $s^{-1}(0)=s(B) \cap B$. Which by Lemma 1.10 is Poincaré dual to $[s(B) \cap B]$ inside $H_{*}(B)$.

Theorem 1.15. Let $\pi: E \longrightarrow B$ be a smooth vector bundle over a compact manifold B. Then for any section s of E, there is a smooth family of sections $s_{t}, t \in \mathbb{R}^{N}$ of E for some large $N \geq 0$ and a dense subset $D \subset \mathbb{R}^{N}$ so that $s=s_{0}$ and s_{t} is transverse to 0 for all $t \in D$.

In particular any smooth section is smoothly homotopic to a smooth section transverse to 0.

Proof. Let $U_{i}, i \in I$ be a finite open cover of B so that $\left.E\right|_{U_{i}}$ is trivial for all $i \in I$. Choose a smooth partition of unity $\rho_{i}: B \longrightarrow[0,1], i \in I$ for B. Let $\tau_{i}:\left.E\right|_{U_{i}} \longrightarrow U_{i} \times \mathbb{R}^{n}$ be a smooth trivialization. Let e_{1}, \cdots, e_{n} be the standard basis for \mathbb{R}^{n}. Define

$$
\sigma_{i}^{\prime k}:\left.U_{i} \longrightarrow E\right|_{U_{i}}, \quad \sigma_{i}^{\prime k}(x)=\tau_{i}^{-1}\left(x, e_{k}\right)
$$

for all $i \in I, k \in\{1, \cdots, n\}$. Define σ_{i}^{k} be the smooth section of E which is equal to $\sigma_{i}^{\prime k}$ inside U_{i} and 0 outside U_{i}.

Define $N \equiv|I| \times n$ and $[n] \equiv\{1, \cdots, n\}$. Then $\mathbb{R}^{N} \cong \mathbb{R}^{I \times[n]}$. Hence all elements $t \in \mathbb{R}^{I \times[n]}$ as maps from $I \times[n]$ to \mathbb{R}. We define

$$
\widetilde{s}: B \times \mathbb{R}^{I \times[n]} \longrightarrow E, \quad \widetilde{s}(x, t) \equiv s+\sum_{i \in I, k \in[n]} t(i, k) \sigma_{i}^{k} .
$$

Let $p r_{2}: U_{i} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be the natural projection map. Then $0 \in \mathbb{R}^{n}$ is a regular value of the map

$$
\widetilde{a}_{i}: U_{i} \times \mathbb{R}^{I \times[n]} \longrightarrow \mathbb{R}^{n}, \quad \widetilde{a}_{i} \equiv p r_{2} \circ \tau_{i} \circ\left(\left.s\right|_{U_{i}}\right) .
$$

Hence $\widetilde{a}_{i}^{-1}(0)$ is a submanifold of $U_{i} \times \mathbb{R}^{I \times[n]}$ for all $i \in I$. Since $\widetilde{a}_{i}^{-1}(0)=\widetilde{s}^{-1}(0) \cap U_{i}$ for all $i \in I$, we get that $\widetilde{s}^{-1}(0)$ is a smooth submanifold of $B \times \mathbb{R}^{I \times[n]}$.

Let $p r_{B}: B \times \mathbb{R}^{I \times[n]} \longrightarrow U_{i}$ be the natural projection map. Then by Sard's theorem, the regular values of $\left.p r_{B}^{\prime} \equiv p r_{B}\right|_{\tilde{s}^{-1}(0)}$ form a dense subset $D \subset \mathbb{R}^{I \times[n]}$ of B.

Define

$$
a_{i, t}: U_{i} \longrightarrow \mathbb{R}^{n}, \quad a_{i, t}(x) \equiv \widetilde{a}_{i}(x, t)
$$

, and

$$
s_{t}: B \longrightarrow E, \quad s_{t}(x) \equiv \widetilde{s}(x, t)
$$

For all $t \in D \cap U_{i}$ and all $x \in a_{i, t}^{-1}(0)$ we have that the derivative of \widetilde{a}_{i} is surjective at x, t and the derivative of $p r_{B}^{\prime}$ is surjective. This implies that the derivative of $a_{i, t}$ is surjective at i, t for all $t \in D$ and hence $a_{i, t}^{-1}(0)$ is transverse to 0 for all $t \in D$. Therefore s_{t} is transverse to 0 for all $t \in D$.

A very similar proof gives us the following result:
Theorem 1.16. (Exercise) Let $\pi: E \longrightarrow B$ be a smooth vector bundle over a compact manifold B and let $H \subset E$ be a smooth submanifold. Then for any section s of E, there is a smooth family of sections $s_{t}, t \in \mathbb{R}^{N}$ of E for some large $N \geq 0$ and a dense subset $D \subset \mathbb{R}^{N}$ so that $s=s_{0}$ and $s_{t}(B)$ is transverse to H for all $t \in D$.

In particular any smooth section is smoothly homotopic to a smooth section transverse to H.

Corollary 1.17. Let $M, M^{\prime} \subset X$ be two smooth submanifolds. Then there is a smooth family of manifolds $M_{t}, t \in \mathbb{R}^{N}$ for some $N>0$ and a dense subset $D \subset \mathbb{R}^{N}$ so that $M_{0}=M$ and M_{t} is transverse to M^{\prime} for all $t \in D$.

In particular any smooth submanifold M is smoothly homotopic to smooth submanifold transverse to any fixed submanifold M^{\prime}.

This follows from the previous theorem by using the tubular neighborhood theorem on M (Exercise).

Lemma 1.18. Let M be a smooth manifold. Let

$$
\Delta_{M} \equiv\{(x, x): x \in M\} \subset M \times M
$$

be the diagonal. Then there is a canonical bundle isomorphism

$$
T M \cong \mathcal{N}_{M \times M} \Delta_{M}
$$

covering the diffeomorphism

$$
M \longrightarrow \Delta_{M}, \quad x \longrightarrow(x, x)
$$

Proof. Define

$$
\Delta_{M}^{\perp} \equiv\left\{(X,-X) \in T_{x, x}(M \times M)=T_{x} M \times T_{x} M \quad: x \in M, \quad X \in T_{x} M .\right\}
$$

Let $Q:\left.T(M \times M)\right|_{\Delta_{M}} \longrightarrow \mathcal{N}_{M \times M} \Delta_{M}$ be the natural quotient map. Then since $\Delta_{M}^{\perp} \cap T \Delta_{M}=$ Δ_{M} and the rank of Δ_{M}^{\perp} is $\operatorname{dim}_{\mathbb{R}}(M)$, we get that

$$
\left.Q^{\prime} \equiv Q\right|_{\Delta_{M}^{\perp}}: \Delta_{M}^{\perp} \longrightarrow \mathcal{N}_{M \times M} \Delta_{M}
$$

is an isomorphism.
We also have a bundle isomorphism:

$$
W: T M \longrightarrow \Delta_{M}^{\perp}, \quad W(X) \equiv(X,-X) .
$$

Hence

$$
Q^{\prime} \circ W: T M \longrightarrow \mathcal{N}_{M \times M} \Delta_{M}
$$

is our natural isomorphism.

As a consequence of the above discussion if M is an oriented manifold then $T M$ and hence $\mathcal{N}_{M \times M} \Delta_{M}$ is oriented. This means that we have fundamental cohomology class $e\left(\Delta_{M}, M \times\right.$ $M)$ of the diagonal $\Delta_{M} \subset M \times M$ inside $M \times M$. The restriction of this class to $H^{n}\left(\Delta_{M} ; \mathbb{Z}\right)=$ $H^{n}(M ; \mathbb{Z})$ is the Euler class of M.

This fundamental cohomology class has the following unique characterization:
Lemma 1.19. Define

$$
j_{x}:(M, M-x) \longrightarrow\left(M \times M, M-\Delta_{M}\right), \quad j_{x}(y) \equiv(x, y) .
$$

Let $\mu_{x}, x \in M$ and $e\left(\Delta_{M}, M \times M\right)$ be as above. Let $\mu^{x} \in H^{n}(M ; M-x ; \mathbb{Z})$ be the unique class satisfying $<\mu^{x}, \mu_{x}>=1$. Then $e\left(\Delta_{M}, M \times M\right)$ is the unique cohomology class satisfying $j_{x}^{*}\left(e\left(\Delta_{M}, M \times M\right)\right)=\mu^{x}$ for all $x \in M$.
Proof. Choose a complete metric on M and let $\operatorname{Exp}: T M \longrightarrow M$ be the exponential map. Define:

$$
E: T M \longrightarrow M \times M, \quad E(X) \equiv(x, \operatorname{Exp}(X)) \in M \times M, \quad \forall x \in M
$$

Also let

$$
E_{x}: T_{x} \longrightarrow M
$$

be the restriction of the exponential map to M. Then $E^{*}\left(e\left(M \times M, \Delta_{M}\right)\right)=e(T M)$ and $E_{x}^{*}\left(\mu^{x}\right)=\left.e(T M)\right|_{H^{n}\left(T_{x} M, T_{x} M-0 ; \mathbb{Z}\right)}$ for all $x \in M$. The Thom isomorphism theorem says that $e(T M)$ is uniquely characterized by its restrictions to $H^{n}\left(T_{x} M, T_{x} M-0 ; \mathbb{Z}\right)$ for each $x \in M$. Hence $E^{*}\left(e\left(\Delta_{M}, M \times M\right)\right.$ is uniquely characterized by the fact that its restriction to $H^{n}\left(T_{x} M, T_{x} M-0 ; \mathbb{Z}\right)$ is $E_{x}^{*}\left(\mu^{x}\right)$ for all $x \in M$. Since $j_{x} \circ E_{x}=\left.E\right|_{T_{x} M}$, and since

$$
\begin{gathered}
\left(E_{x}\right)^{*}: H^{n}(M ; M-x ; \mathbb{Z}) \longrightarrow H^{n}\left(T_{x} M ; T_{x} M-0 ; \mathbb{Z}\right) \\
E^{*}: H^{n}\left(M \times M ; M \times M-\Delta_{M}\right) \longrightarrow H^{n}(T M ; T M-M ; \mathbb{Z})
\end{gathered}
$$

are isomorphisms, we get that $e\left(\Delta_{M}, M \times M\right)$ is uniquely characterized by the fact that $j_{x}^{*}\left(e\left(\Delta_{M}, M \times M\right)\right)=\mu^{x}$ for all $x \in M$.

Definition 1.20. The image of $e\left(\Delta_{M}, M \times M ; \Lambda\right)$ inside $H^{n}(M \times M ; \Lambda)$ is called the diagonal cohomology class in $H^{n}(M \times M ; \Lambda)$ for any commutative ring Λ.

We would like a nice expression for this class at least when Λ is a field.
Lemma 1.21. Let M be a smooth compact connected oriented manifold. Let $P: H^{*}(M ; \Lambda) \longrightarrow$ $H^{n}(M ; \Lambda)=\Lambda$ be the natural projection map and let $Q: H^{*}(M ; \Lambda) \otimes H^{*}(M ; \Lambda) \longrightarrow \Lambda$ be the composition of the cup product map with Λ. Let $b_{1}, \cdots, b_{l} \in H^{*}(M ; \Lambda)$ be a basis for the Λ vector space $H^{*}(M ; \Lambda)$. Since Q is non-degenerate, we have a dual basis $b_{1}^{*}, \cdots, b_{l}^{*} \in H^{*}(M ; \Lambda)$.

Then $e\left(\Delta_{M}, M \times M ; \Lambda\right)=\sum_{i=1}^{l} b_{i} \otimes b_{i}^{*} \in H^{*}(M ; \Lambda) \otimes H^{*}(M ; \Lambda)=H^{*}(M \times M ; \Lambda)$.
Proof. First of all, changing the basis does not change the class $b \equiv \sum_{i=1}^{l} b_{i} \otimes b_{i}^{*}$. Therefore we can assume that b_{1} is the generator of $H^{0}(M ; \Lambda)$ and hence b_{1}^{*} is the generator of $H^{n}(M ; \Lambda)$ and that $b_{j} \in H^{i}(M ; \Lambda)$ for some positive $i \in \mathbb{N}$ for each $j=1, \cdots, l$.

By the previous lemma it is sufficient for us to show that $j_{x}^{*}(b)=\mu^{x}$ for all $x \in M$. For degree reasons we have that $j_{x}^{*}\left(b_{i} \otimes b_{i}^{*}\right)$ is zero for all $j>1$. Hence $j_{x}^{*}(b)=j_{x}^{*}\left(b_{1} \otimes b_{1}^{*}\right)=$ $b_{1}^{*}=\mu^{x} \in H^{n}(M ; M-x)$ for all $x \in M$. Therefore $e\left(\Delta_{M}, M \times M ; \Lambda\right)=\sum_{i=1}^{l} b_{i} \otimes b_{i}^{*} \in$ $H^{*}(M ; \Lambda) \otimes H^{*}(M ; \Lambda)=H^{*}(M \times M ; \Lambda)$.

