1. Complex Vector bundles and complex manifolds

Definition 1.1. A complex vector bundle is a fiber bundle with fiber \mathbb{C}^{n} and structure group $G L(n, \mathbb{C})$. Equivalently, it is a real vector bundle E together with a bundle automorphism $J: E \longrightarrow E$ satisfying $J^{2}=-i d$. (this is because any vector space with a linear map J satisfying $J^{2}=-i d$ has an real basis identifying it with \mathbb{C}^{n} and J with multiplication by $i)$. The map J is called a complex structure on E.

An almost complex structure on a manifold M is a complex structure on E. An almost complex manifold is a manifold together with an almost complex structure.
Definition 1.2. A complex manifold is a manifold with charts $\tau_{i}: U_{i} \longrightarrow \mathbb{C}^{n}$ which are homeomorphisms onto open subsets of \mathbb{C}^{n} and chart changing maps $\tau_{i} \circ \tau_{j}^{-1}: \tau_{j}\left(U_{i} \cap U_{j}\right) \longrightarrow$ $\tau_{i}\left(U_{i} \cap U_{j}\right)$ equal to biholomorphisms.

Holomorphic maps between complex manifolds are defined so that their restriction to each chart is holomorphic.

Note that a complex manifold is an almost complex manifold. We have a partial converse to this theorem:

Theorem 1.3. (Newlander-Nirenberg)(we wont prove this).
An almost complex manifold (M, J) is a complex manifold if:

$$
[J(v), J(w)]=J([v, J w])+J[J(v), w]+[v, w]
$$

for all smooth vector fields v, w.
Definition 1.4. A holomorphic vector bundle $\pi: E \longrightarrow B$ is a complex manifold E together with a complex base B so that the transition data: $\Phi_{i j}: U_{i} \cap U_{j} \longrightarrow G L(n, \mathbb{C})$ are holomorphic maps (here $G L(n, \mathbb{C}$) is a complex vector space).

Example 1.5. We define $\mathbb{C P}^{n}$ to be the set of complex lines through the origin in \mathbb{C}^{n}. We define the transition maps in the same way as in $\mathbb{R P}^{n}$:

Coordinates are given equivalence classes of non-trivial vectors $\left[z_{0}, \cdots, z_{n}\right]$ in \mathbb{C}^{n+1} where two such vectors are equivalent if they are a scalar multiple of each other. We define $U_{i}=$ $\left\{z_{i} \neq 0\right\}$ and define:

$$
\tau_{i}: U_{i} \longrightarrow \mathbb{C}^{n}, \quad \tau_{i}\left(\left[z_{0}, \cdots, z_{n}\right]\right) \equiv\left(z_{0} / z_{i}, \cdots, z_{i-1} / z_{i}, z_{i+1} / z_{i}, \cdots, z_{n} / z_{i}\right) .
$$

This has a canonical complex line bundle $\mathcal{O}(-1)$ whose fiber over a point $\left[z_{0}, \cdots, z_{n}\right]$ is the line through this point in \mathbb{C}^{n+1}. In other words it is the natural map

$$
\pi_{\mathbb{C P}^{n}}: \mathbb{C}^{n+1}-0 \longrightarrow \mathbb{C P}^{n}, \quad \pi_{\mathbb{C P}^{n}}\left(z_{0}, \cdots, z_{n}\right)=\left[z_{0}, \cdots, z_{n}\right] .
$$

These are holomorphic vector bundles with trivializations over U_{i} given by

$$
\tau_{i}: \pi_{\mathbb{C P}^{n}}^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times \mathbb{C}, \quad \tau_{i}\left(z_{0}, \cdots, z_{n}\right) \equiv\left(\left[z_{0}, \cdots, z_{n}\right], z_{k} / z_{i}\right)
$$

for some choice of $k \neq i$.
More generally we can define $G r_{k}(\mathbb{C})$ to be the set of k-dimensional vector spaces in exactly the same way as we did for $G r_{k}\left(\mathbb{R}^{n}\right)$. This is a complex manifold with a canonical complex bundle $\gamma_{n}^{k}(\mathbb{C})$.

Exercise: show that the above manifolds and bundles are holomorphic.
Example 1.6. If $\pi: E \longrightarrow B$ is a real vector bundle then $E \otimes \mathbb{C}$ is a complex vector bundle.
Lemma 1.7. If $\pi: E \longrightarrow B$ is a complex vector bundle then $E_{\mathbb{R}}$ (the underlying real vector bundle) is oriented.

Proof. The choice of orientation comes from the fact that $G L(n, \mathbb{C})$ are orientation preserving maps and \mathbb{C}^{n} has a canonical orientation sending $\left(x_{j}+i y_{j}\right)_{j \in\{1, \cdots, n\}}$ to $x_{1} \wedge y_{1} \wedge \cdots \wedge x_{n} \wedge y_{n}$.

As a result, all complex vector bundles have Euler classes.
We define $G r_{k}\left(\mathbb{C}^{\infty}\right)$ as the direct limit of $G r_{k}\left(\mathbb{C}^{n}\right)$ as n goes to infinity. This is a complex vector bundle (it is no longer holomorphic). The following theorem has exactly the same proof as the corresponding theorem over \mathbb{R} :
Theorem 1.8. $G r_{k}\left(\mathbb{C}^{n}\right)$ is the classifying space for complex vector bundles.
More precisely: Let $\left[B, G r_{n}\left(\mathbb{C}^{\infty}\right)\right]$ be the set of continuous maps $B \longrightarrow K$ up to homotopy for some CW complex B. Let $V e c t_{\mathbb{C}}^{n}(B)$ be the set of isomorphism classes of complex vector bundles over B of rank k. In other words the map:

$$
i:\left[B, G r_{n}\left(\mathbb{C}^{\infty}\right)\right] \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{n}(B), \quad i(f) \equiv f^{*} \gamma_{n}^{l}(\mathbb{C}), \forall f: B \longrightarrow G r_{n}\left(\mathbb{C}^{\infty}\right)
$$

is a bijection.
Theorem 1.9. Let $h_{n}:\left(\mathbb{C} \mathbb{P}^{\infty}\right)^{n} \longrightarrow G r_{n}\left(\mathbb{C}^{\infty}\right)$ be the classifying map for the bundle $\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}(\mathbb{C})$ where $p_{i}:\left(\mathbb{C P}^{\infty}\right)^{n} \longrightarrow \mathbb{C P}^{\infty}$ is the projection map to the i th factor.

Then $H^{*}\left(\mathbb{C} \mathbb{P}^{\infty} ; \mathbb{Z}\right)=\mathbb{Z}[u]$ as a ring where u has degree 2 and hence $H^{*}\left(\left(\mathbb{C P}^{\infty}\right)^{n} ; \mathbb{Z}\right)=$ $\mathbb{Z}\left[u_{1}, \cdots, u_{n}\right]$ as a ring where u_{1}, \cdots, u_{n} has degree 2 .

Also the natural map $h_{n}^{*}: H^{*}\left(G r_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right) \longrightarrow H^{*}\left(\left(\mathbb{C} \mathbb{P}^{\infty}\right)^{n} ; \mathbb{Z}\right)=\mathbb{Z}\left[u_{1}, \cdots, u_{n}\right]$ is injective with image equal to $\mathbb{Z}\left[\sigma_{1}, \cdots, \sigma_{n}\right]$ where σ_{j} is the j th symmetric polynomial in u_{1}, \cdots, u_{k}.
Definition 1.10. The k-th Chern class $c_{k}(E)$ of a complex vector bundle $\pi: E \longrightarrow B$ is defined to be $f^{*} \sigma_{k} \in H^{k}(B ; \mathbb{Z})$ where $f: B \longrightarrow G r_{k}\left(\mathbb{C}^{\infty}\right)$ is the classifying map for E.

We define $c(E) \equiv c_{1}(E)+c_{2}(E)+\cdots \in \widehat{H}^{*}(B ; \mathbb{Z})$ to be the total Chern class of E.
Proposition 1.11. The Chern classes $c_{k}(E) \in H^{2 k}(B)$ satisfy the following axioms and are uniquely characterized by them:

- Dimension: $c_{0}(E)=1$ and $c_{k}(E)=0$ for all $k>2 n$ where n is the rank of our bundle.
- Naturality: Any two isomorphic complex bundles have the same chern classes. Also if $f: B^{\prime} \longrightarrow B$ is continuous then $c_{k}\left(f^{*}(E)\right)=f^{*}\left(c_{k}(E)\right)$.
- Whitney Sum: For two complex vector bundles $\pi_{1}: E_{1} \longrightarrow B$ and $\pi_{2}: E_{2} \longrightarrow B$ we have that

$$
c_{k}\left(E_{1} \oplus E_{2}\right)=\sum_{j=0}^{k} c_{j}\left(E_{1}\right) \cup c_{k-j}\left(E_{2}\right) .
$$

- Normalization: $c_{1}\left(\mathcal{O}_{\mathbb{C P}^{1}}(-1)\right)=-u$ where $H^{*}\left(\mathbb{C P}^{1} ; \mathbb{Z}\right)=\mathbb{Z}[u] / u^{2}$, where u has degree 2. .
The proof is very similar to the analogous proof for Stiefel Whitney classes. (Exercise).
We will now classify all complex vector bundles over $\mathbb{C P}^{1}$. We need some preliminary lemmas.
Lemma 1.12. Let G be a lie group and let H be a closed lie subgroup. Then the coset space G / H is a manifold and the quotient map $G \longrightarrow G / H$ is a fiber bundle with fiber diffeomorphic to H.

We won't prove this, we will just use it in the next lemma.
Lemma 1.13. The determinant map det : $G l(k, \mathbb{C}) \longrightarrow \mathbb{C}^{*}$ is an isomorphism on π_{1} and hence $\pi_{1}(G l(k, \mathbb{C}))=\mathbb{Z}$.

Proof. By induction it is sufficient for us to show that $G l(k-1, \mathbb{C}) \longrightarrow G l(k, \mathbb{C})$ is an isomorphism on π^{1} for $k>1$. Now $G l(k, \mathbb{C})$ acts transitively on $\mathbb{C}^{k}-0$ and has stabilizer subgroup is isomorphic to the subgroup $G \subset G L(k, \mathbb{C})$ consisting of invertible matrices of the form:

$$
\left(\begin{array}{cccc}
1 & \star & \cdots & \star \\
0 & \star & \cdots & \star \\
\vdots & & & \vdots \\
0 & \star & \cdots & \star
\end{array}\right)
$$

This means that the quotient $G l(k, \mathbb{C}) / G$ is diffeomorphic to $\mathbb{C}^{k}-0$ and hence $G l(k, \mathbb{C})$ is a fiber bundle over $\mathbb{C}^{k}-0$ with fiber diffeomorphic to G.

We have that G deformation retracts on to $G L(k-1, \mathbb{C})$ and this deformation retraction $h_{t}: G \longrightarrow G, t \in[0,1]$ is given by

$$
h_{t}\left(\begin{array}{cccc}
1 & x_{1} & \cdots & x_{k} \\
0 & \star & \cdots & \star \\
\vdots & & & \vdots \\
0 & \star & \cdots & \star
\end{array}\right)=\left(\begin{array}{cccc}
1 & t x_{1} & \cdots & t x_{k} \\
0 & \star & \cdots & \star \\
\vdots & & & \vdots \\
0 & \star & \cdots & \star
\end{array}\right) .
$$

Here $G L(n, k)$ is identified with invertible matrices of the form: $\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & \star & \cdots & \star \\ \vdots & & & \vdots \\ 0 & \star & \cdots & \star\end{array}\right)$.
Since $G l(k, \mathbb{C})$ is a fiber bundle over $\mathbb{C}^{k}-0$ with fiber homotopic to $G L(k-1, \mathbb{C})$ we get a long exact sequence:

$$
\pi_{2}\left(\mathbb{C}^{k}-0\right) \longrightarrow \pi_{1}(G l(k-1, \mathbb{C})) \longrightarrow \pi_{1}(G l(k, \mathbb{C})) \longrightarrow \pi_{1}\left(\mathbb{C}^{k}-0\right)
$$

Since $\mathbb{C}^{k}-0$ is homotopic to a sphere of dimension $2 k-1$, we get that $\pi_{j}\left(\mathbb{C}^{k}-0\right)=0$ for $j=1,2$ as $k>1$. Therefore the map

$$
\pi_{1}(G l(k-1, \mathbb{C})) \longrightarrow \pi_{1}(G l(k, \mathbb{C}))
$$

is an isomorphism and we are done by induction.
Lemma 1.14. Complex vector bundles of rank n over $\mathbb{C P}^{1}$ are classified by their first Chern class. There is exactly one such bundle with Chern class $m u$ for each $m \in \mathbb{Z}$ and this is isomorphic to $\mathcal{O}_{\mathbb{C P}^{1}}(m) \oplus \mathbb{C}^{n-1}$ where $\mathcal{O}_{\mathbb{C P}^{1}}(m) \equiv \mathcal{O}_{\mathbb{C P}^{1}}(-1)^{\otimes-m}$.
Proof. All such bundles are classified by homotopy classes of maps from $\mathbb{C P}^{1}=S^{2}$ to $G r_{n}\left(\mathbb{C}^{\infty}\right)$ and hence by $\pi_{2}\left(G r_{n}\left(\mathbb{C}^{\infty}\right)\right)$. Let $V_{n} \longrightarrow G r_{n}\left(\mathbb{C}^{\infty}\right)$ be the frame bundle of $\gamma_{\infty}^{n}(\mathbb{C})$ (i.e. the bundle whose fiber at a point is the set of bases of that fiber). This is a principal $G L(n, \mathbb{C})$ bundle and since $G r_{n}\left(\mathbb{C}^{\infty}\right)$ is a classifying space, we have that V_{n} is contractible. Hence we have a homotopy long exact sequence:

$$
\pi_{2}\left(V_{n}\right) \longrightarrow \pi_{2}\left(G r_{n}\left(\mathbb{C}^{\infty}\right)\right) \longrightarrow \pi_{1}(G L(n, \mathbb{C})) \longrightarrow \pi_{1}\left(V_{n}\right)
$$

Since $\pi_{i}\left(V_{n}\right)=0$ for $i=1,2$, we get that $\pi_{2}\left(G r_{n}\left(\mathbb{C}^{\infty}\right)\right)=\pi_{1}(G l(n, \mathbb{C}))=\mathbb{Z}$ by the previous lemma.

Since $\pi_{2}\left(G r_{n}\left(\mathbb{C}^{\infty}\right)\right)=\mathbb{Z}$ we have that complex vector bundles of rank n over $\mathbb{C P}^{1}$ are classified by \mathbb{Z}. A bundle representing $m \in \mathbb{Z}$ is built using the clutching construction:

Let $[z, w]$ be homogeneous coordinates for $\mathbb{C P}^{1}$ and let $U_{1}=\{z \neq 0\}$ and $U_{2}=\{w \neq 0\}$. Then $U_{1} \cap U_{2}$ is homotopic to the equator $S^{1} \subset \mathbb{C P}^{1}=S^{2}$. Therefore the transition maps

$$
\Phi_{12}: U_{1} \longrightarrow U_{2} \longrightarrow G l(n, \mathbb{C})
$$

are classified by elements of $\pi_{1}(G l(n, \mathbb{C}))$. A bundle representing $m \in \mathbb{Z}$ is therefore given by a map Φ_{12} as above so that det $\circ \Phi_{12}: U_{1} \cap U_{2} \longrightarrow \mathbb{C}^{*}$ represents $m \in \pi_{1}\left(\mathbb{C}^{*}\right)$.

The bundle $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$ has transition map

$$
\Phi_{12}: U_{1} \cap U_{2} \longrightarrow \mathbb{C}^{*}, \quad \Phi_{12}([z, w]=z / w) .
$$

Therefore the bundle $\mathcal{O}_{\mathbb{C P}^{1}}(m)$ has transition map

$$
\Phi_{12}: U_{1} \cap U_{2} \longrightarrow \mathbb{C}^{*}, \quad \Phi_{12}\left([z, w]=(z / w)^{-m}\right) .
$$

These bundles represent $-m \in \mathbb{Z}$.
Therefore the bundles $\mathcal{O}_{\mathbb{C P}^{1}}(m) \oplus \mathbb{C}^{n-1}$ represent $-m \in \mathbb{Z}$ as well and they represent all complex bundles of rank n up to isomorphism since $\pi_{2}(G l(n, \mathbb{C}))=\mathbb{Z}$.

We now need to compute the first Chern class of these bundles. This is done as follows: It is sufficient for us to computing $c_{1}\left(\mathcal{O}_{\mathbb{C P}^{1}}(m)\right)$. Since $\mathcal{O}_{\mathbb{C P}^{1}}(m) \oplus \mathcal{O}_{\mathbb{C P}^{1}}(-m)$ is trivial, we get that $c_{1}\left(\mathcal{O}_{\mathbb{C P}^{1}}(m)\right)=-c_{1}\left(\mathcal{O}_{\mathbb{C P}^{1}}(-m)\right)$. Therefore we can assume that $m<0$.

Now $\mathcal{O}_{\mathbb{C P}^{1}}(m)=f_{m}^{*} \mathcal{O}_{\mathbb{C P}^{1}}(-1)$ where f_{m} is the map

$$
f_{m}: \mathbb{C P}^{1} \longrightarrow \mathbb{C P}^{1}, \quad f_{m}([z, w])=\left[z^{-m}, w^{-m}\right] .
$$

(this is well defined since $-m>0$). Since $f_{m}^{*}(u)=m u$, we get that $c_{1}\left(\mathcal{O}_{\mathbb{C P}^{1}}(m)\right)=m$. Hence $\mathcal{O}_{\mathbb{C P}^{1}}(m)=m$ for all $m \in \mathbb{Z}$.

Lemma 1.15. The bundle $\mathcal{O}_{\mathbb{C P}^{n}}(-1)$ has no holomorphic sections other than the zero section.
Proof. If the bundle did have such a section then by restricting to $\mathbb{C P}^{1}$ we would see that $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$ has a holomorphic section. Therefore we can assume that $n=1$.

Define $\mathcal{O}_{\mathbb{C P}^{1}}(n) \equiv \mathcal{O}_{\mathbb{C P}^{1}}(-1)^{\otimes-n}$. Let $U_{1}=\{z \neq 0\}$ and $U_{2}=\{w \neq 0\}$. We have two trivializations $\tau_{j}:\left.\mathcal{O}_{\mathbb{C P}^{1}}(n)\right|_{U_{j}} \longrightarrow U_{j} \times \mathbb{C}, j=1,2$. The bundle $\mathcal{O}_{\mathbb{C P}^{1}}(n)$ is characterized by the transition data

$$
\Phi_{12}: U_{1} \cap U_{2} \longrightarrow G L(1, \mathbb{C}) \equiv \mathbb{C}^{*}, \quad \Phi_{12}([z, w]) \equiv(z / w)^{-n}
$$

This means that if $n=0$ then $\mathcal{O}_{\mathbb{C P}^{1}}(0)$ is isomorphic as a holomorphic bundle to the trivial bundle $\mathbb{C P}^{1} \times \mathbb{C}$.

If $n=1$ then we have a section s satisfying

$$
\tau_{1} \circ\left(\left.s\right|_{U_{1}}\right)([z, w])=([z, w], z / w) \quad \text { and } \quad \tau_{2} \circ\left(\left.s\right|_{U_{2}}\right)([z, w])=([z, w], 1) .
$$

Now suppose that $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$ has a section σ. Since

$$
\iota: \mathcal{O}_{\mathbb{C P}^{1}}(-1) \longrightarrow \mathcal{O}_{\mathbb{C P}^{1}}(1)=\mathcal{O}_{\mathbb{C P}^{1}}(0)=\mathbb{C} \mathbb{P}^{1} \times \mathbb{C}
$$

is an isomorphism we get a section $\iota(\sigma \otimes s)$ of $\mathbb{C P}^{1} \times \mathbb{C}$. Since all holomorphic functions on $\mathbb{C P}^{1}$ are constant this implies that $\operatorname{pr}(\sigma \otimes s)$ is constant where $p r: \mathbb{C P}^{1} \times \mathbb{C} \longrightarrow \mathbb{C}$ is the projection map.

Since $s([0,1])=0$ we then get that $\sigma \otimes s([0,1])=0$ which implies that $\sigma \otimes s$ is the zero section. Since s is nonzero along U_{2} this implies that σ must be zero along U_{2}. Since U_{2} is dense in $\mathbb{C P}^{1}$, we then get that σ must be zero. Hence $\mathcal{O}_{\mathbb{C P}^{n}}(-1)$ only has one section given by the zero section.

Lemma 1.16. There exists a non-trivial holomorphic vector bundle which is trivial as a complex vector bundle.

Proof. We have that $\mathcal{O}_{\mathbb{C P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{C P}^{1}}(1)$ is trivial as a complex vector bundle.
Suppose that it was trivial as a holomorphic vector bundle. Then it would admit two holomorphic sections s, s^{\prime} which form a basis at each fiber. Since such sections are of the form $s=s_{1} \oplus s_{2}$ and $s^{\prime}=s_{1}^{\prime} \oplus s_{2}^{\prime}$ where s_{1}, s_{1}^{\prime} are sections of $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$ and s_{1}, s_{2}^{\prime} are sections of $\mathcal{O}_{\mathbb{C P}^{1}}(1)$, we get that either s_{1} are s_{2} is a non-trivial section of $\mathcal{O}_{\mathbb{C P}^{1}}(-1)$ which is impossible.

