
1. Complex Vector bundles and complex manifolds

Definition 1.1. A complex vector bundle is a fiber bundle with fiber Cn and structure
group GL(n,C). Equivalently, it is a real vector bundle E together with a bundle automor-
phism J : E −→ E satisfying J2 = −id. (this is because any vector space with a linear map
J satisfying J2 = −id has an real basis identifying it with Cn and J with multiplication by
i). The map J is called a complex structure on E.

An almost complex structure on a manifold M is a complex structure on E. An almost
complex manifold is a manifold together with an almost complex structure.

Definition 1.2. A complex manifold is a manifold with charts τi : Ui −→ Cn which are
homeomorphisms onto open subsets of Cn and chart changing maps τi ◦ τ−1j : τj(Ui∩Uj) −→
τi(Ui ∩ Uj) equal to biholomorphisms.

Holomorphic maps between complex manifolds are defined so that their restriction to each
chart is holomorphic.

Note that a complex manifold is an almost complex manifold. We have a partial converse
to this theorem:

Theorem 1.3. (Newlander-Nirenberg)(we wont prove this).
An almost complex manifold (M,J) is a complex manifold if:

[J(v), J(w)] = J([v, Jw]) + J [J(v), w] + [v, w]

for all smooth vector fields v, w.

Definition 1.4. A holomorphic vector bundle π : E −→ B is a complex manifold E
together with a complex base B so that the transition data: Φij : Ui ∩ Uj −→ GL(n,C) are
holomorphic maps (here GL(n,C) is a complex vector space).

Example 1.5. We define CPn to be the set of complex lines through the origin in Cn. We
define the transition maps in the same way as in RPn:

Coordinates are given equivalence classes of non-trivial vectors [z0, · · · , zn] in Cn+1 where
two such vectors are equivalent if they are a scalar multiple of each other. We define Ui =
{zi 6= 0} and define:

τi : Ui −→ Cn, τi([z0, · · · , zn]) ≡ (z0/zi, · · · , zi−1/zi, zi+1/zi, · · · , zn/zi).
This has a canonical complex line bundle O(−1) whose fiber over a point [z0, · · · , zn] is the

line through this point in Cn+1. In other words it is the natural map

πCPn : Cn+1 − 0 −→ CPn, πCPn(z0, · · · , zn) = [z0, · · · , zn].

These are holomorphic vector bundles with trivializations over Ui given by

τi : π−1CPn(Ui) −→ Ui × C, τi(z0, · · · , zn) ≡ ([z0, · · · , zn], zk/zi)

for some choice of k 6= i.
More generally we can define Grk(C) to be the set of k-dimensional vector spaces in exactly

the same way as we did for Grk(Rn). This is a complex manifold with a canonical complex
bundle γkn(C).

Exercise: show that the above manifolds and bundles are holomorphic.

Example 1.6. If π : E −→ B is a real vector bundle then E⊗C is a complex vector bundle.

Lemma 1.7. If π : E −→ B is a complex vector bundle then ER (the underlying real vector
bundle) is oriented.
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Proof. The choice of orientation comes from the fact that GL(n,C) are orientation preserving
maps and Cn has a canonical orientation sending (xj+iyj)j∈{1,··· ,n} to x1∧y1∧· · ·∧xn∧yn. �

As a result, all complex vector bundles have Euler classes.
We define Grk(C∞) as the direct limit of Grk(Cn) as n goes to infinity. This is a complex

vector bundle (it is no longer holomorphic). The following theorem has exactly the same
proof as the corresponding theorem over R:

Theorem 1.8. Grk(Cn) is the classifying space for complex vector bundles.
More precisely: Let [B,Grn(C∞)] be the set of continuous maps B −→ K up to homotopy

for some CW complex B. Let V ectnC(B) be the set of isomorphism classes of complex vector
bundles over B of rank k. In other words the map:

i : [B,Grn(C∞)] −→ V ectnC(B), i(f) ≡ f∗γln(C), ∀ f : B −→ Grn(C∞)

is a bijection.

Theorem 1.9. Let hn : (CP∞)n −→ Grn(C∞) be the classifying map for the bundle
⊕n

i=1p
∗
i γ

1
∞(C) where pi : (CP∞)n −→ CP∞ is the projection map to the ith factor.

Then H∗(CP∞;Z) = Z[u] as a ring where u has degree 2 and hence H∗((CP∞)n;Z) =
Z[u1, · · · , un] as a ring where u1, · · · , un has degree 2.

Also the natural map h∗n : H∗(Grn(C∞);Z) −→ H∗((CP∞)n;Z) = Z[u1, · · · , un] is injective
with image equal to Z[σ1, · · · , σn] where σj is the jth symmetric polynomial in u1, · · · , uk.

Definition 1.10. The k-th Chern class ck(E) of a complex vector bundle π : E −→ B is
defined to be f∗σk ∈ Hk(B;Z) where f : B −→ Grk(C∞) is the classifying map for E.

We define c(E) ≡ c1(E) + c2(E) + · · · ∈ Ĥ∗(B;Z) to be the total Chern class of E.

Proposition 1.11. The Chern classes ck(E) ∈ H2k(B) satisfy the following axioms and are
uniquely characterized by them:

• Dimension: c0(E) = 1 and ck(E) = 0 for all k > 2n where n is the rank of our
bundle.
• Naturality: Any two isomorphic complex bundles have the same chern classes. Also

if f : B′ −→ B is continuous then ck(f∗(E)) = f∗(ck(E)).
• Whitney Sum: For two complex vector bundles π1 : E1 −→ B and π2 : E2 −→ B

we have that

ck(E1 ⊕ E2) =

k∑
j=0

cj(E1) ∪ ck−j(E2).

• Normalization: c1(OCP1(−1)) = −u where H∗(CP1;Z) = Z[u]/u2, where u has
degree 2..

The proof is very similar to the analogous proof for Stiefel Whitney classes. (Exercise).
We will now classify all complex vector bundles over CP1. We need some preliminary

lemmas.

Lemma 1.12. Let G be a lie group and let H be a closed lie subgroup. Then the coset
space G/H is a manifold and the quotient map G −→ G/H is a fiber bundle with fiber
diffeomorphic to H.

We won’t prove this, we will just use it in the next lemma.

Lemma 1.13. The determinant map det : Gl(k,C) −→ C∗ is an isomorphism on π1 and
hence π1(Gl(k,C)) = Z.
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Proof. By induction it is sufficient for us to show that Gl(k − 1,C) −→ Gl(k,C) is an
isomorphism on π1 for k > 1. Now Gl(k,C) acts transitively on Ck − 0 and has stabilizer
subgroup is isomorphic to the subgroup G ⊂ GL(k,C) consisting of invertible matrices of the
form: 

1 ? · · · ?
0 ? · · · ?
...

...
0 ? · · · ?

 .

This means that the quotient Gl(k,C)/G is diffeomorphic to Ck − 0 and hence Gl(k,C) is a
fiber bundle over Ck − 0 with fiber diffeomorphic to G.

We have that G deformation retracts on to GL(k − 1,C) and this deformation retraction
ht : G −→ G, t ∈ [0, 1] is given by

ht


1 x1 · · · xk
0 ? · · · ?
...

...
0 ? · · · ?

 =


1 tx1 · · · txk
0 ? · · · ?
...

...
0 ? · · · ?

 .

Here GL(n, k) is identified with invertible matrices of the form:


1 0 · · · 0
0 ? · · · ?
...

...
0 ? · · · ?

 .

Since Gl(k,C) is a fiber bundle over Ck − 0 with fiber homotopic to GL(k − 1,C) we get
a long exact sequence:

π2(Ck − 0) −→ π1(Gl(k − 1,C)) −→ π1(Gl(k,C)) −→ π1(Ck − 0).

Since Ck − 0 is homotopic to a sphere of dimension 2k − 1, we get that πj(Ck − 0) = 0 for
j = 1, 2 as k > 1. Therefore the map

π1(Gl(k − 1,C)) −→ π1(Gl(k,C))

is an isomorphism and we are done by induction. �

Lemma 1.14. Complex vector bundles of rank n over CP1 are classified by their first Chern
class. There is exactly one such bundle with Chern class mu for each m ∈ Z and this is
isomorphic to OCP1(m)⊕ Cn−1 where OCP1(m) ≡ OCP1(−1)⊗−m.

Proof. All such bundles are classified by homotopy classes of maps from CP1 = S2 toGrn(C∞)
and hence by π2(Grn(C∞)). Let Vn −→ Grn(C∞) be the frame bundle of γn∞(C) (i.e. the
bundle whose fiber at a point is the set of bases of that fiber). This is a principal GL(n,C)
bundle and since Grn(C∞) is a classifying space, we have that Vn is contractible. Hence we
have a homotopy long exact sequence:

π2(Vn) −→ π2(Grn(C∞)) −→ π1(GL(n,C)) −→ π1(Vn).

Since πi(Vn) = 0 for i = 1, 2, we get that π2(Grn(C∞)) = π1(Gl(n,C)) = Z by the previous
lemma.

Since π2(Grn(C∞)) = Z we have that complex vector bundles of rank n over CP1 are
classified by Z. A bundle representing m ∈ Z is built using the clutching construction:
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Let [z, w] be homogeneous coordinates for CP1 and let U1 = {z 6= 0} and U2 = {w 6= 0}.
Then U1 ∩ U2 is homotopic to the equator S1 ⊂ CP1 = S2. Therefore the transition maps

Φ12 : U1 −→ U2 −→ Gl(n,C)

are classified by elements of π1(Gl(n,C)). A bundle representing m ∈ Z is therefore given by
a map Φ12 as above so that det ◦ Φ12 : U1 ∩ U2 −→ C∗ represents m ∈ π1(C∗).

The bundle OCP1(−1) has transition map

Φ12 : U1 ∩ U2 −→ C∗, Φ12([z, w] = z/w).

Therefore the bundle OCP1(m) has transition map

Φ12 : U1 ∩ U2 −→ C∗, Φ12([z, w] = (z/w)−m).

These bundles represent −m ∈ Z.
Therefore the bundles OCP1(m) ⊕ Cn−1 represent −m ∈ Z as well and they represent all

complex bundles of rank n up to isomorphism since π2(Gl(n,C)) = Z.
We now need to compute the first Chern class of these bundles. This is done as follows: It

is sufficient for us to computing c1(OCP1(m)). Since OCP1(m) ⊕ OCP1(−m) is trivial, we get
that c1(OCP1(m)) = −c1(OCP1(−m)). Therefore we can assume that m < 0.

Now OCP1(m) = f∗mOCP1(−1) where fm is the map

fm : CP1 −→ CP1, fm([z, w]) = [z−m, w−m].

(this is well defined since −m > 0). Since f∗m(u) = mu, we get that c1(OCP1(m)) = m. Hence
OCP1(m) = m for all m ∈ Z. �

Lemma 1.15. The bundle OCPn(−1) has no holomorphic sections other than the zero section.

Proof. If the bundle did have such a section then by restricting to CP1 we would see that
OCP1(−1) has a holomorphic section. Therefore we can assume that n = 1.

Define OCP1(n) ≡ OCP1(−1)⊗−n. Let U1 = {z 6= 0} and U2 = {w 6= 0}. We have two
trivializations τj : OCP1(n)|Uj −→ Uj × C, j = 1, 2. The bundle OCP1(n) is characterized by
the transition data

Φ12 : U1 ∩ U2 −→ GL(1,C) ≡ C∗, Φ12([z, w]) ≡ (z/w)−n.

This means that if n = 0 then OCP1(0) is isomorphic as a holomorphic bundle to the trivial
bundle CP1 × C.

If n = 1 then we have a section s satisfying

τ1 ◦ (s|U1)([z, w]) = ([z, w], z/w) and τ2 ◦ (s|U2)([z, w]) = ([z, w], 1).

Now suppose that OCP1(−1) has a section σ. Since

ι : OCP1(−1) −→ OCP1(1) = OCP1(0) = CP1 × C
is an isomorphism we get a section ι(σ ⊗ s) of CP1 × C. Since all holomorphic functions on
CP1 are constant this implies that pr(σ ⊗ s) is constant where pr : CP1 × C −→ C is the
projection map.

Since s([0, 1]) = 0 we then get that σ ⊗ s([0, 1]) = 0 which implies that σ ⊗ s is the zero
section. Since s is nonzero along U2 this implies that σ must be zero along U2. Since U2 is
dense in CP1, we then get that σ must be zero. Hence OCPn(−1) only has one section given
by the zero section. �

Lemma 1.16. There exists a non-trivial holomorphic vector bundle which is trivial as a
complex vector bundle.
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Proof. We have that OCP1(−1)⊕ OCP1(1) is trivial as a complex vector bundle.
Suppose that it was trivial as a holomorphic vector bundle. Then it would admit two

holomorphic sections s, s′ which form a basis at each fiber. Since such sections are of the
form s = s1⊕s2 and s′ = s′1⊕s′2 where s1, s

′
1 are sections of OCP1(−1) and s1, s

′
2 are sections of

OCP1(1), we get that either s1 are s2 is a non-trivial section of OCP1(−1) which is impossible.
�


