
1. Pontryagin and Chern Numbers

Definition 1.1. Recall that a partition of a non-negative integer k is an unordered sequence
of positive numbers I = i1, · · · , ir whose sum is k. If J = j1, · · · , js a partition of l then we
define

IJ ≡ i1, · · · , ir, j1, · · · , js
to be the corresponding partition of k + l.

We have a partial order � on partitions of k where I � J if I is a refinement of J which
means that J = I1I2 · · · Ir where Ij is a partition of ij for all j ∈ {1, · · · , r}.

Definition 1.2. Let K be an (almost) complex manifold of complex dimension n and let
I = i1, · · · , ir be a partition of n. Then we define the Ith Chern number to be

cI([K
n]) = ci1ci2 · · · cir [Kn] ≡ ci1(TKn) ∪ ci2(TKn) ∪ · · · ∪ cir(TKn)([Kn]).

We define cI([K
n]) ≡ 0 if I is a partition of an integer other than n.

Example 1.3. Recall that

c(CPn) = (1 + u)n+1 =
n+1∑
i=0

(
n+ 1

i

)
ui.

Therefore ci1ci2 · · · cir [CPn] =
∏r
j=1

(
n+1
ij

)
if i1, · · · , ir is a partition of n.

A complex 1-manifold as one Chern number, a 2 manifold has 2 Chern numbers and in
general, a complex n-manifold has p(n) Chern numbers where p(n) is the number of partitions
of n.

Recall that H∗(Grn(C∞)) = Z[σ1, · · · , σn] where σj = cj(γ
n
∞) for all j = 1, · · · , n. This

means that H2n(Grn(C∞)) is the free abelian group generated by products
∏r
j=1 σij where

i1, · · · , ij is a partition of n. As a result, if f : K −→ Grn(C∞) is the classifying map of TK
then the Chern numbers of K are determined by the image of the fundamental class f∗([K

n])
of K inside H2n(Grn(C∞)) via the formula:

ci1ci2 · · · cir [Kn] = σi1 · · ·σir([f∗(K
n)])

which are exactly the coefficients of f∗([K
n]) with respect to the basis of H2n(Grn(C∞)) as

above.

Definition 1.4. Let M4n be a smooth compact oriented manifold of dimension 4n and let
I = i1, · · · , ir be a partition of n. The Ith Pontryagin number of M4n is

pI [M
4n] = pi1pi2 · · · pir [M4n] ≡ pi1(TM) ∪ · · · pir(TM)([M4n]).

Example 1.5. For any partition i1, · · · , ir of n,

pi1pi2 · · · pir [CP2n] =

(
2n+ 1

i1

)(
2n+ 1

i2

)
· · ·
(

2n+ 1

ir

)
.

If we reverse the orientation of M4n then its Pontryagin classes do not change as the
definition does not involve the orientation in any way, but the fundamental class changes
sign. This means that if we change the orientation of M4n then the Pontryagin numbers
pI [M

4n] change sign. As a result we have the following Lemma:

Lemma 1.6. If M4n has a non-zero Pontryagin number then M4n cannot have an orientation
reversing diffeomorphism.
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Proof. Suppose that M4n has an orientation reversing diffeomorphism τ : M −→ M . Then
if I ≡ i1, · · · , ir is a partition of n then

pI [M ] = pi1(TM) ∪ · · · ∪ pir(TM)([M ]) = (τ−1)∗pi1(TM) ∪ · · · ∪ pir(TM)(τ∗([M ])) =

−(τ−1)∗pi1(TM) ∪ pir(TM)([M ]).

NOw since τ−1 is a diffeomorphism, we have that (τ−1)∗TM is isomorphic to TM which
implies that

(τ−1)∗pi1(TM) ∪ · · · ∪ (τ−1)∗pi1(TM)([M ]) = pi1(TM) ∪ · · · ∪ pir(TM)([M ]).

Hence pI [M ] = −pI [M ] which implies that pI [M ] = 0. �

Corollary 1.7. CP2n admits no orientation reversing diffeomorphism.

Proof. We have that pn[CP2n] =
(
2n+1
n

)
6= 0. �

Note that CP2n+1 does have an orientation reversing diffeomorphism given by sending
[z0, · · · , z2n+1] to [z0, · · · , z2n+1].

This is very different from the Euler class e(M) since e(Sn) 6= 0 where Sn is the n-sphere,
yet Sn admits an orientation reversing diffeomorphism.

We also have the following Lemma:

Lemma 1.8. If the Pontryagin number of M4n is non-zero then M cannot be the boundary
of an oriented compact 4n+ 1 manifold.

Proof. Suppose thatM = ∂W is the boundary of an oriented manifoldW and let ι : M −→W
be the inclusion map. Let µW ∈ H4n+1(W,M ;Z) be the fundamental class. Then ∂ :
H4n+1(W,M ;Z) −→ H4n(M ;Z) sends µW to a fundamental class µM of M . Also TW |M =
TM ⊕ R and hence pi(TW )|M = pi(TM). Let δ : H4n(M ;Z) −→ H4n+1(W,M ;Z) be the
natural connecting map. If i1, · · · , ir is a partition of n, then

pi1(TM) ∪ · · · ∪ pir(TM)(µM ) = pi1(TW |M ) ∪ · · · ∪ pir(TW |M )(∂µW )

δ(pi1(TW |M ) ∪ · · · ∪ pir(TW |M ))(µW ) = δ(ι∗pi1(TW ) ∪ · · · ∪ ι∗pir(TW ))(µW ) = 0

since

H4n(W ;Z)
ι∗−→ H4n(M ;Z)

δ−→ H4n+1(W,M ;Z)

is a long exact sequence.
�

Corollary 1.9. CP2n is not the boundary of any oriented manifold.

It turns out that CP2n+1 is the boundary of a 4n+ 1 manifold as follows (sketch): We can
define quaternionic projective space HPn in the usual way. Identify H = C⊕C in the natural
way. Then we have a natural quotient map (C ⊕ C)n+1 −→ HPn. This factors through the
quotient map (C⊕ C)n+1 = C2n+2 −→ CP2n+1. Hence there is a natural fibration

CP2n+1 −→ HPn

with fiber equal to CP1 = S2. In particular the S2 bundle can be extended to a D3 = {x ∈
R3 : |x| ≤ 1} bundle and hence CP2n+1 is the boundary of a D3 bundle over HPn.
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Definition 1.10. Recall that the set of symmetric polynomials in Z[u1, · · · , un] is equal to
the subalgebra Z[σ1, · · · , σn] freely generated by the elementary symmetric polynomials. Let
I = i1, · · · , ir be a partition of k. Then by the above fact, there is a unique polynomial
sI(σ1, · · · , σn) equal to

∑
σ u

i1
σ(1) · · ·u

ir
σr where we sum over all permutations σ of {1, · · · , r}.

If π : E −→ B is a complex vector bundle, then we define

sI(c(E)) ≡ sI(c1(E), · · · , cn(E)).

Lemma 1.11. (Thom) Let π : E −→ B, π′ : E′ −→ B be complex vector bundles. Then

sI(c(E ⊕ E′)) =
∑
JK=I

sJ(c(E)) ∪ sK(c(E′))

where we sum over all partitions J,K satisfying JK = I.

Corollary 1.12. If I = k then

sk(c(E ⊕ E′)) = sk(c(E)) + sk(c(E
′)).

Proof. of Lemma 1.11. Define G ≡ Grn(C∞), γ ≡ γn∞, G′ ≡ Grn′(C∞) and γ′ ≡ γn′∞ where n
is the rank of E and n′ is the rank of E′. Let f : B −→ G and f ′ : B −→ G′ be the classifying
maps for E and E′ respectively. Let f × f ′ : B −→ G × G′ be the corresponding product
map.

Since (f × f ′)∗sI(c(γ × γ′)) = sI(c(E ⊕ E′)),

f∗(sJ(γ)) = sJ(c(E)), f∗(sK(γ′)) = sK(c(E′))

it is sufficient for us to prove that

sI(γ×γ′) =
∑
JK=I

sJ(γ)⊗sK(γ′) ∈ H∗(G×G′;Z) = H∗(G;Z)⊗H∗(G′;Z) = Z[σ1, · · · , σn, σ′1, · · · , σ′n′ ]

⊂ Z[u1, · · · , un, u′1, · · · , u′n].

Here σi is the ith symmetric polynomial in u1, · · · , un and σ′i is the ith symmetric polynomial
in u′1, · · · , u′n′ . Let I = i1, · · · , ir. Now γ × γ′ = p∗γ ⊕ (p′)∗γ′ where p : G × G′ −→ G and
p′ : G×G′ −→ G′ are the natural projection maps. Hence by the Whitney product theorem:

ck(γ × γ′) =

k∑
i=0

σiσ
′
k−i.

Therefore

sI(c(γ × γ′)) = sI

(
1∑
i=1

σiσ
′
1−i, · · · ,

n+n′∑
i=1

σiσ
′
n+n′−i

)
=
∑
JK=I

∑
σ

∑
σ′

uj1σ(1) · · ·u
js
σ(s)(u

′
σ′(1))

k1 · · · (u′σ′(t))
kt

where J = j1, · · · , js and K = k1, · · · , kt satisfies JK = I and we are summing over all such
JK and all permutations σ of {1, · · · , s} and permutations σ′ of {frm[o]−−, · · · , t}.

Also ∑
JK=I

sJ(σ1, · · · , σs)sK(σ′1, · · · , σ′t)

is equal to the above sum. �



4

Definition 1.13. If Kn is a complex manifold then we define

sI [K
n] ≡ sI(c(TK))[Kn].

We have the following immediate corollary of Thom’s lemma above.

Corollary 1.14.

sI [K
m × Ln] =

∑
J,K

sJ [Km]sK [Ln]

where we now sum over all partitions J of m and J of n respectively satisfying JK = I.

Corollary 1.15.

sm+n[Km × Lm] = 0.

Example 1.16. Since c(CPn) = (1 +a)n+1 where a is Poincaré dual to CPn−1, we have that
ck(CPn) is the k-th symmetric polynomial, all of whose n+1 entries are equal to a. Therefore
sk(c(CPn)) = (n+ 1)ak. Hence sn[CPn] = (n+ 1) 6= 0. Hence CPn cannot be expressed as a
product of almost complex manifolds.

We have similar formulas for Pontryagin numbers.

Definition 1.17. For I = i1, · · · , ir a partition of k and V real vector bundle, define

sI(p(E)) ≡ sI(pi1(V ), · · · , pir(V )) ∈ H4k(B;Z).

If M4n is an oriented 4n-manifold and I = i1, · · · , ir a partition of n, define

sI [M
4n] ≡ sI(p(TM))[M ].

We have the following lemma which is analogous to Thom’s lemma above:

Lemma 1.18.

sI(p(E ⊕ E′)) =
∑
JK=I

sJ(E) ∪ sK(E′)

Corollary 1.19.

sI [M
4m ×N4n] =

∑
J,K

sJ [M4m]sJ [N4n]

where J is a partition of m and K is a partition of n satisfying JK = I.

Theorem 1.20. (Thom) Let K1, · · · ,Kn be complex manifolds of dimension 1, · · · , n re-
spectively satisfying sk(c(K

k)) 6= 0. Then the p(n)× p(n) matrix

ci1 · · · cir [Kj1 × · · · ×Kjs ]

is non-degenerate where p(n) is the number of partitions of n, I = i1, · · · , ir is a partition of
n and J = j1, · · · , js is a partition of n.

Theorem 1.21. (Thom) LetM4, · · · ,M4n be oriented manifolds whose satisfying pk(c(M
4k)) 6=

0. Then the p(n)× p(n) matrix

pi1 · · · pir [M4j1 × · · · ×M4js ]

is non-degenerate where p(n) is the number of partitions of n, I = i1, · · · , ir is a partition of
n and J = j1, · · · , js is a partition of n.

For example we can take M4i = CP2i.
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Proof of Theorem 1.20. Note:

sI [K
j1 × · · ·Kjs ] =

∑
I1I2···Is=I

sI1 [Kj1 ]sI2 [Kk2 ] · · · sIs [Kjs ]

by a generalization of Thom’s lemma above. The term:

sI1 [Kj1 ]sI2 [Kk2 ] · · · sIs [Kjs ]

is non-zero only when Iq is a partition of jq for all q = 1, · · · , s. Hence”

sI [K
j1 × · · ·Kjs ] =

∑
I1,··· ,Is

sI1 [Kj1 ]sI2 [Kk2 ] · · · sIs [Kjs ]

where we sum over I1, · · · , Is where Iq is a partition of jq for all q = 1, · · · , s and I1I2 · · · Is =
I.

This implies that if we arrange the partitions I of n so that they respect the ordering �
above then

ci1 · · · cir [Kj1 × · · · ×Kjs ]

becomes an upper triangular matrix. It also has non-zero diagonal entries due to the fact
that sk(c(K

k)) 6= 0 for all k and hence must be non-degenerate. �


