1. The Oriented Cobordism Ring

Definition 1.1. Let M be an oriented manifold with boundary. Then the boundary ∂M also has a natural orientation as follows: If we have any local oriented chart

$$\tau: U \longrightarrow \mathbb{H}^n \equiv \{ (x_1, \cdots, x_n : x_1 \ge 0) \}$$

then x_2, \dots, x_n is an oriented chart for ∂M .

Another way of describing this for smooth manifolds is as follows: Let V be a vector field defined near ∂M which points outwards. In other words, in any chart τ as above, V is equal to $f(x_1, \dots, x_n) \frac{\partial}{\partial x_1} + V_2$ in this chart where $f(0, x_2, \dots, x_n) < 0$ and V_2 is tangent to ∂M . Let $E \subset TM|_{\partial M}$ be the one dimensional sub-bundle spanned bay V. Then

$$TM|_{\partial M}/E \cong T\partial M$$

and hence $TM|_{\partial M} \cong E \oplus T\partial M$. Since we have a natural trivialization $T : E \longrightarrow \partial M \times \mathbb{R}$ sending V to 1, and since $TM|_{\partial M}$ is oriented, we get that $T\partial M$ has a natural orientation and hence ∂M is oriented.

Here is a third way of describing this. An orientation on a smooth *n*-manifold M corresponds a choice of *n*-form Ω which does not vanish anywhere. Let V be the vector field as above. Then $i_V(\Omega)|_{\partial M}$ is a nowhere vanishing n-1 form on ∂M and hence gives us a natural orientation on ∂M .

(Exercise: show that these three definitions are equivalent).

Theorem 1.2. (Collar Neighborhood Theorem) Let M be a smooth paracompact manifold with boundary. Then there is a neighborhood of ∂M diffeomorphic to $(0,1] \times \partial M$.

Oriented Cobordism

Definition 1.3. If M is an oriented manifold then we write -M for the same manifold but with opposite orientation.

Two smooth manifold M, M' are said to be **oriented cobordant** or **belong to the same cobordism class** if if there is an oriented compact manifold with boundary X and an orientation preserving diffeomorphism

$$\Phi: M \sqcup (-M') \longrightarrow \partial X.$$

Example 1.4. Suppose that there is an orientation preserving diffeomorphism $\Psi: M \longrightarrow M'$ then M and M' are oriented cobordant by the cobordism $X = [0,1] \times M$ and the diffeomorphism

$$\Phi: M \sqcup (-M') \longrightarrow X, \quad \left\{ \begin{array}{ll} \Phi(x) = (0, x) & \text{if } x \in M \\ \Phi(x) = (1, \Psi(x)) & \text{if } x \in M' \end{array} \right.$$

Definition 1.5. We define Ω_n to be the set of all oriented cobordism classes of n manifolds. If M is an oriented manifold, then we write [M] for the corresponding element in Ω_n .

Note, one may wonder if Ω_n is actually a set at all. Since every *n*-manifold can be embedded in to \mathbb{R}^{2n} by Whitehead's theorem, one sees that every *n*-manifold is diffeomorphic submanifold of \mathbb{R}^{2n} . This implies that each manifold is oriented cobordant to a manifold diffeomorphic to a submanifold of \mathbb{R}^{2n} . Therefore the size of Ω_n is at most the power set of \mathbb{R}^{2n} and hence must be a set.

Lemma 1.6. (Exercise). Being oriented cobordant is a reflexive, symmetric and transitive relation. Also Ω_n becomes an abelian group where the group operation is disjoint union.

Also $\Omega_* \equiv \sqcup_{n \ge 0} \Omega_n$ is a ring with addition equal to disjoint union and multiplication corresponds to the cross product. The identity element is the positively oriented point $\{\star\}$ in Ω_0 . Also $[M_1^n] \times [M_2^m] = (-1)^{mn} [M_2^m] \times [M_1^n]$ which means that Ω_* is a **graded commutative ring**.

Definition 1.7. Ω_* is called the **oriented cobordism ring**.

Lemma 1.8. (Pontryagin) If M and M' are oriented cobordant 4k manifolds then they have the same Pontryagin numbers.

Proof. Since $M \sqcup -M'$ is the oriented boundary of a 4k + 1 manifold, we get that all the Pontryagin numbers of $M \sqcup -M'$ are trivial. Let $p_I(M), p_I(M')$ be two Pontryagin numbers where I is a partition of k. Then

$$0 = p_I(M \sqcup -M') = p_I(M) + p_I(-M') = p_I(M) - p_I(M')$$

and hence they have the same Pontryagin numbers.

Corollary 1.9. For any partition I of k, we get a group homomorphism

$$\Omega_{4k} \longrightarrow \mathbb{Z}, \quad [M] \longrightarrow p_I(M).$$

Corollary 1.10. The products

$$\mathbb{CP}^{i_1} \times \cdots \times \mathbb{CP}^{i_r}$$

as i_1, \dots, i_r range over all partitions of k are linearly independent inside the group Ω_{4k} . Hence Ω_{4k} has rank greater than or equal to p(k) which is the number of partitions of k.

Proof. This follows from the fact (from the previous section) that the $p(k) \times p(k)$ -matrix

$$\left[p_{i_1}\cdots p_{i_r}\left[\mathbb{CP}^{2j_1}\times\cdots\times\mathbb{CP}^{2j_s}\right]\right]$$

where i_1, \dots, i_r and j_1, \dots, j_s run over all partitions of k.

Hence we get a surjective group homomorphism

$$\Omega_{4k} \longrightarrow \mathbb{Z}^{P_k}, \quad M \longrightarrow (p_{i_1} \cdots p_{i_r}[M])_{i_1, \cdots, i_r \in P_k}$$

where P_k is the set of partitions of k.

Here is Ω_k for some small k:

- $\Omega_0 = \mathbb{Z}$ since every 0 manifold is a set of signed points.
- $\Omega_1 = 0$ since every compact oriented 1-manifold is the boundary of a disjoint union of disks.
- $\Omega_2 = 0$ since every compact oriented 2-manifold is a genus g surface and hence is the boundary of a 3 manifold with g handles.
- $\Omega_3 = 0$. (Rohlin).
- $\Omega_4 = \mathbb{Z}$ and is generated by \mathbb{CP}^2 .
- $\Omega_5 = \mathbb{Z}/2$ generated by Y^5 , a non-singular hypersurface of degree (1,1) inside $\mathbb{RP}^2 \times \mathbb{RP}^4$.
- $\Omega_6 = 0$
- $\Omega_7 = 0$
- $\Omega_8 = \mathbb{Z} \oplus \mathbb{Z}$ generated by \mathbb{CP}^4 and $\mathbb{CP}^2 \times \mathbb{CP}^2$
- $\Omega_9 = \mathbb{Z}/2 \oplus \mathbb{Z}/2$ generated by $Y^5 \times \mathbb{CP}^2$ and Y^9 , a non-singular hypersurface of degree (1,1) inside $\mathbb{RP}^2 \times \mathbb{RP}^8$.
- $\Omega_{10} = \mathbb{Z}/2$ generated by $Y^5 \times Y^5$

• $\Omega_{11} = \mathbb{Z}/2$ generate by Y^{11} , a non-singular hypersurface of degree (1,1) inside $\mathbb{RP}^4 \times \mathbb{RP}^8$.