1. The Oriented Cobordism Ring

Definition 1.1. Let M be an oriented manifold with boundary. Then the boundary ∂M also has a natural orientation as follows: If we have any local oriented chart

$$
\tau: U \longrightarrow \mathbb{H}^{n} \equiv\left\{\left(x_{1}, \cdots, x_{n}: x_{1} \geq 0\right)\right\}
$$

then x_{2}, \cdots, x_{n} is an oriented chart for ∂M.
Another way of describing this for smooth manifolds is as follows: Let V be a vector field defined near ∂M which points outwards. In other words, in any chart τ as above, V is equal to $f\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}+V_{2}$ in this chart where $f\left(0, x_{2}, \cdots, x_{n}\right)<0$ and V_{2} is tangent to ∂M. Let $\left.E \subset T M\right|_{\partial M}$ be the one dimensional sub-bundle spanned bay V. Then

$$
\left.T M\right|_{\partial M} / E \cong T \partial M
$$

and hence $\left.T M\right|_{\partial M} \cong E \oplus T \partial M$. Since we have a natural trivialization $T: E \longrightarrow \partial M \times \mathbb{R}$ sending V to 1 , and since $\left.T M\right|_{\partial M}$ is oriented, we get that $T \partial M$ has a natural orientation and hence ∂M is oriented.

Here is a third way of describing this. An orientation on a smooth n-manifold M corresponds a choice of n-form Ω which does not vanish anywhere. Let V be the vector field as above. Then $\left.i_{V}(\Omega)\right|_{\partial M}$ is a nowhere vanishing $n-1$ form on ∂M and hence gives us a natural orientation on ∂M.
(Exercise: show that these three definitions are equivalent).
Theorem 1.2. (Collar Neighborhood Theorem) Let M be a smooth paracompact manifold with boundary. Then there is a neighborhood of ∂M diffeomorphic to $(0,1] \times \partial M$.

Oriented Cobordism

Definition 1.3. If M is an oriented manifold then we write $-M$ for the same manifold but with opposite orientation.

Two smooth manifold M, M^{\prime} are said to be oriented cobordant or belong to the same cobordism class if if there is an oriented compact manifold with boundary X and an orientation preserving diffeomorphism

$$
\Phi: M \sqcup\left(-M^{\prime}\right) \longrightarrow \partial X
$$

Example 1.4. Suppose that there is an orientation preserving diffeomorphism $\Psi: M \longrightarrow$ M^{\prime} then M and M^{\prime} are oriented cobordant by the cobordism $X=[0,1] \times M$ and the diffeomorphism

$$
\Phi: M \sqcup\left(-M^{\prime}\right) \longrightarrow X, \quad\left\{\begin{array}{cc}
\Phi(x)=(0, x) & \text { if } x \in M \\
\Phi(x)=(1, \Psi(x)) & \text { if } x \in M^{\prime}
\end{array}\right.
$$

Definition 1.5. We define Ω_{n} to be the set of all oriented cobordism classes of n manifolds. If M is an oriented manifold, then we write $[M]$ for the corresponding element in Ω_{n}.

Note, one may wonder if Ω_{n} is actually a set at all. Since every n-manifold can be embedded in to $\mathbb{R}^{2 n}$ by Whitehead's theorem, one sees that every n-manifold is diffeomorphic submanifold of $\mathbb{R}^{2 n}$. This implies that each manifold is oriented cobordant to a manifold diffeomorphic to a submanifold of $\mathbb{R}^{2 n}$. Therefore the size of Ω_{n} is at most the power set of $\mathbb{R}^{2 n}$ and hence must be a set.

Lemma 1.6. (Exercise). Being oriented cobordant is a reflexive, symmetric and transitive relation. Also Ω_{n} becomes an abelian group where the group operation is disjoint union.

Also $\Omega_{*} \equiv \sqcup_{n \geq 0} \Omega_{n}$ is a ring with addition equal to disjoint union and multiplication corresponds to the cross product. The identity element is the positively oriented point $\left\{\star\right.$ in in Ω_{0}. Also $\left[M_{1}^{n}\right] \times\left[M_{2}^{m}\right]=(-1)^{m n}\left[M_{2}^{m}\right] \times\left[M_{1}^{n}\right]$ which means that Ω_{*} is a graded commutative ring.
Definition 1.7. Ω_{*} is called the oriented cobordism ring.
Lemma 1.8. (Pontryagin) If M and M^{\prime} are oriented cobordant $4 k$ manifolds then they have the same Pontryagin numbers.

Proof. Since $M \sqcup-M^{\prime}$ is the oriented boundary of a $4 k+1$ manifold, we get that all the Pontryagin numbers of $M \sqcup-M^{\prime}$ are trivial. Let $p_{I}(M), p_{I}\left(M^{\prime}\right)$ be two Pontryagin numbers where I is a partition of k. Then

$$
0=p_{I}\left(M \sqcup-M^{\prime}\right)=p_{I}(M)+p_{I}\left(-M^{\prime}\right)=p_{I}(M)-p_{I}\left(M^{\prime}\right)
$$

and hence they have the same Pontryagin numbers.
Corollary 1.9. For any partition I of k, we get a group homomorphism

$$
\Omega_{4 k} \longrightarrow \mathbb{Z}, \quad[M] \longrightarrow p_{I}(M)
$$

Corollary 1.10. The products

$$
\mathbb{C P}^{i_{1}} \times \cdots \times \mathbb{C P}^{i_{r}}
$$

as i_{1}, \cdots, i_{r} range over all partitions of k are linearly independent inside the group $\Omega_{4 k}$. Hence $\Omega_{4 k}$ has rank greater than or equal to $p(k)$ which is the number of partitions of k.
Proof. This follows from the fact (from the previous section) that the $p(k) \times p(k)$-matrix

$$
\left[p_{i_{1}} \cdots p_{i_{r}}\left[\mathbb{C P}^{2 j_{1}} \times \cdots \times \mathbb{C P}^{2 j_{s}}\right]\right]
$$

where i_{1}, \cdots, i_{r} and j_{1}, \cdots, j_{s} run over all partitions of k.
Hence we get a surjective group homomorphism

$$
\Omega_{4 k} \longrightarrow \mathbb{Z}^{P_{k}}, \quad M \longrightarrow\left(p_{i_{1}} \cdots p_{i_{r}}[M]\right)_{i_{1}, \cdots, i_{r} \in P_{k}}
$$

where P_{k} is the set of partitions of k.
Here is Ω_{k} for some small k :

- $\Omega_{0}=\mathbb{Z}$ since every 0 manifold is a set of signed points.
- $\Omega_{1}=0$ since every compact oriented 1-manifold is the boundary of a disjoint union of disks.
- $\Omega_{2}=0$ since every compact oriented 2-manifold is a genus g surface and hence is the boundary of a 3 manifold with g handles.
- $\Omega_{3}=0$. (Rohlin).
- $\Omega_{4}=\mathbb{Z}$ and is generated by $\mathbb{C P}^{2}$.
- $\Omega_{5}=\mathbb{Z} / 2$ generated by Y^{5}, a non-singular hypersurface of degree $(1,1)$ inside $\mathbb{R}^{2} \times$ $\mathbb{R P}^{4}$.
- $\Omega_{6}=0$
- $\Omega_{7}=0$
- $\Omega_{8}=\mathbb{Z} \oplus \mathbb{Z}$ generated by $\mathbb{C P}^{4}$ and $\mathbb{C P}^{2} \times \mathbb{C P}^{2}$
- $\Omega_{9}=\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$ generated by $Y^{5} \times \mathbb{C P}^{2}$ and Y^{9}, a non-singular hypersurface of degree $(1,1)$ inside $\mathbb{R} \mathbb{P}^{2} \times \mathbb{R} \mathbb{P}^{8}$.
- $\Omega_{10}=\mathbb{Z} / 2$ generated by $Y^{5} \times Y^{5}$
- $\Omega_{11}=\mathbb{Z} / 2$ generate by Y^{11}, a non-singular hypersurface of degree $(1,1)$ inside $\mathbb{R P}^{4} \times$ $\mathbb{R P}^{8}$.

