## 1. Thom Spaces and Transversality

Definition 1.1. Let $\pi: E \longrightarrow B$ be a real $k$ vector bundle with a Euclidean metric and let $E^{\geq 1}$ be the set of elements of norm $\geq 1$. The Thom space $T(E)$ of $E$ is the quotient $E / E^{\geq 1}$. This has a preferred basepoint $\star_{E}=E^{\geq 1} \in E / E^{\geq 1}$. The complement $T(E)-\star_{E}$ is equal to $E^{<1}$ the subset of $E$ consisting of vectors of norm less than 1 .

Note that up to homeomorphism this space does not depend on the choice of Euclidean metric on $E$.

Lemma 1.2. If the base $B$ is a CW complex then $T(E)$ is a $k-1$ connected CW complex.
Proof. Let $f: D^{d} \longrightarrow B$ be the characteristic map for a $d$-cell of $B$. Since $f^{*} E$ is trivial, we get that $f^{*} E^{\leq 1}$ is a product $D^{d} \times D^{k}$ which is a $d+k$ cell. Then $T(E)$ has a zero cell corresponding to $\star_{E}$ and then all the other cells have characteristic maps corresponding to the natural map $f^{*}\left(E^{\leq 1}\right) \longrightarrow T(E)$ giving us a $d+k$-cell of $T(E)$. (Exercise: fill in the details).

Lemma 1.3. We have that $H_{i}(B)$ is canonically isomorphic to $H_{i+k}(T(E))$.
Proof. Since $E^{\geq 1}$ is homotopic to $E-B$, we have that this follows from the Thom isomorphism theorem.

Definition 1.4. We let $\mathcal{C}$ be the class of all finite abelian groups. A homomorphism $h$ : $A \longrightarrow B$ between abelian groups is called a $\mathcal{C}$-isomorphism if $h^{-1}(0)$ and $h(A) / B$ are in $\mathcal{C}$ (I.e. they are finite dimensional).

Theorem 1.5. Let $X$ be a finite CW complex which is $k-1$ connected. Then the Hurewicz homomorphism

$$
\pi_{r}(X) \longrightarrow H_{r}(X ; \mathbb{Z})
$$

is a C -isomorphism for $r<2 k-1$.
Proof. This is true of $X$ is an $n$ sphere when $n \geq k$ since $\pi_{r}\left(S^{n}\right)$ is finite for $r>2 n-1$ (See Spanier).

If this theorem is true for $k$-1-connected finite CW complexes $X$ and $X^{\prime}$ then it is true for $X \times X^{\prime}$ by the Künneth formula. Hence by applying the Hurewicz theorem to the pair ( $X \times X^{\prime}, X \vee X^{\prime}$ ) we get

$$
\pi_{r}\left(X \vee X^{\prime}\right) \cong \pi_{r}\left(X \times X^{\prime}\right) \cong \pi_{r}(X) \oplus \pi_{r}\left(X^{\prime}\right)
$$

for $r<2 k-1$. Therefore our theorem is true for any wedge sum of spheres.
Finally let $X$ be an arbitrary $k-1$-connected finite CW complex. Since the homotopy groups of $X$ are finitely generated (Spanier), we can choose a finite basis for the torsion free part of $\pi_{r}(X)$ for each $r<2 k$ and then combine these maps into a single map

$$
f: S^{r_{1}} \vee \cdots \vee S^{r_{p}} \longrightarrow X
$$

Then $f$ is a C-isomorphism of homotopy groups. By the Serre's generalized Whitehead theorem (Spanier page 512), this implies that it is a $\mathcal{C}$-isomorphism of homology groups as well and hence the theorem follows.

We have the following immediate corollary.

Corollary 1.6. Let $\pi: E \longrightarrow B$ be a rank $k$ bundle where $B$ is a finite CW complex. Then the composition

$$
\pi_{n+k}(T(E)) \longrightarrow H_{n+k}(T(E) ; \mathbb{Z}) \longrightarrow H_{n}(B ; \mathbb{Z})
$$

is a $\mathcal{C}$-isomorphism.
Recall that we have the following theorem:
Theorem 1.7. (Steenrod Approximation Theorem) Let $\pi: E \longrightarrow B$ be a smooth vector bundle with a Euclidean metric. Let $\sigma$ be a continuous section of this bundle. Then for every $\delta>0$, there is a smooth section $s$ so that $|s(b)-\sigma(b)|<\delta$ for all $b \in B$.

We get the following corollary of this theorem:
Corollary 1.8. Let $f: M \longrightarrow N$ be a continuous map between smooth manifolds. Then $f$ is homotopic to a smooth map.

In fact we need a stronger corollary:
Corollary 1.9. Let $f: M \longrightarrow M^{\prime}$ be a continuous map between smooth manifolds and let $K \subset M$ be a closed subset and $U \subset M$ an open set whose closure is compact and disjoint from $K$. Then there is a continuous map $f_{1}: M \longrightarrow M^{\prime}$ homotopic to $f$ so that $\left.f_{1}\right|_{U}$ is smooth and $\left.f_{1}\right|_{K}=\left.f\right|_{K}$.
Proof. Choose a smooth embedding $M^{\prime} \subset \mathbb{R}^{N}$ and let $\Psi: N \longrightarrow \mathbb{R}^{n}$ be a tubular neighborhood. Define

$$
P: \operatorname{Im}(\Psi) \longrightarrow M^{\prime}, \quad P(x)=\pi_{\mathcal{N}_{\mathbb{R}^{N}} M^{\prime}} \Psi^{-1}(x)
$$

where

$$
\pi_{\mathcal{N}_{\mathbb{R}^{N}} M^{\prime}}: \mathcal{N}_{\mathbb{R}^{N}} M^{\prime} \longrightarrow M^{\prime}
$$

is the normal bundle of $M^{\prime}$ in $\mathbb{R}^{n}$.
Let $V_{1} \subset M^{\prime}$ be a relatively compact open set containing $\bar{U}$. Let $\delta>0$ be small enough so that for each $x \in V_{1}$, the ball of radius $\delta$ in $\mathbb{R}^{n}$ centered at $x$ is contained inside $\operatorname{Im}(\Psi)$.

Recall that there is a natural $1-1$ correspondence between continuous (resp. smooth) maps $M \longrightarrow \mathbb{R}^{n}$ and sections of the trivial bundle $M \times \mathbb{R}^{n}$ given by sending a map $s: M \longrightarrow \mathbb{R}^{n}$ to the section $\widetilde{s}: M \longrightarrow M \times \mathbb{R}^{n}, \quad \widetilde{s}(x)=(x, s(x))$. As a result, we can apply the Steenrod Approximation to the trivial bundle $M \times \mathbb{R}^{n}$ so that we get a smooth map $g: M \longrightarrow \mathbb{R}^{n}$ so that $|g(x)-f(x)|<\delta$ for all $x \in M$.

Now choose a smooth function $\rho: M \longrightarrow[0,1]$ so that $\left.\rho\right|_{U}=1$ and $\left.\rho\right|_{M^{\prime}-V_{1}}=0$. Now define

$$
g_{t}: M \longrightarrow M^{\prime}, \quad g_{t}(x) \equiv P(t \rho(x)(g(x)-f(x))+(1-\rho(x)) f(x)) \quad \forall t \in[0,1] .
$$

Then $g_{t}$ is a homotopy from $f$ to $f_{1} \equiv g_{1}$ and $\left.f_{1}\right|_{K}=\left.f\right|_{K}$ and $\left.f_{1}\right|_{U}=\left.P(g(x))\right|_{U}$ which is smooth.
Definition 1.10. Let $f: M \longrightarrow M^{\prime}$ be a smooth map and $N \subset M^{\prime}$ a smooth submanifold. Let $\pi_{\mathcal{N}_{M^{\prime}} N}: \mathcal{N}_{M^{\prime}} N \longrightarrow N$ be the normal bundle of $N$ inside $M^{\prime}$. Let $Q:\left.T M^{\prime}\right|_{N} \longrightarrow \mathcal{N}_{M^{\prime}} N$ be the natural quotient map. We say that $f$ is transverse to $N$ if the natural map

$$
\left.\pi_{\mathcal{N}_{M^{\prime}} N} \circ Q \circ D f\right|_{f^{*}\left(\left.T M^{\prime}\right|_{N}\right)}: f^{*}\left(\left.T M^{\prime}\right|_{N}\right) \longrightarrow \mathcal{N}_{M^{\prime}} N
$$

is surjective.
Equivalently $f$ is transverse to $N$ if the graph $\Gamma_{f} \subset M \times M^{\prime}$ of $f$ is transverse to the submanifold $M \times N \subset M \times M^{\prime}$.
(Exercise: show these two definitions are the same).

We will also need the following lemma:
Lemma 1.11. Let $f: M \longrightarrow M^{\prime}$ be a continuous map between smooth manifolds where $M$ is compact (possibly with boundary). Let $K \subset N$ be a compact set and $U \subset N$ an open set whose closure is disjoint from $K$. Then there is a smooth map $F: \mathbb{R}^{k} \times M \longrightarrow M^{\prime}$ so that $\left.F\right|_{0 \times M}=f$ for some large $k$ and a dense open subset $U \subset \mathbb{R}^{k}$ so that $\left.F\right|_{\{x\} \times M}$ is transverse to $N$ for all $x \in U$.

Proof. Let $\Gamma_{f}$ be the graph of $F$. By the Thom Transversality theorem, there is a smooth family of submanifolds

$$
\Gamma_{x} \subset M \times M^{\prime}, \quad x \in \mathbb{R}^{k}
$$

and a dense open subset $V \subset \mathbb{R}^{k}$ so that $\Gamma_{x}$ is transverse to $M \times N$ if and only if $x \in V$.
Since $\Gamma_{x}$ is a smooth family of submanifolds, there is a small ball $B(\delta) \subset \mathbb{R}^{k}$ centered at 0 of radius $\delta$ so that $\Gamma_{x}$ is transverse to $\{y\} \times M^{\prime}$ for all $y \in M$ and $x \in B_{\delta}$. Then $\Gamma_{x}$ is the graph of a smooth map $f_{x}: M \longrightarrow M^{\prime}$ for all $x \in B(\delta)$. Define

$$
F: B(\delta) \times M \longrightarrow M^{\prime}, \quad F(x, y) \equiv f_{x}(y)
$$

and $U \equiv V \cap B(\delta)$. Then $F$ has the properties we want after identifying the ball $B(\delta)$ diffeomorphically with $\mathbb{R}^{k}$.

Theorem 1.12. Let $\pi: E \longrightarrow B$ be a smooth real oriented rank $k$ vector bundle with a choice of Euclidean metric. Every continuous map $f: S^{m} \longrightarrow T(E)$ is homotopic to $g: S^{m} \longrightarrow T(E)$ so that

$$
\left.g\right|_{g^{-1}\left(E^{<1}\right)}: g^{-1}\left(E^{<1}\right) \longrightarrow E^{<1}
$$

is smooth and transverse to the zero section $B$. The oriented cobordism class of the $(m-k)$ manifold $g^{-1}(B) \subset S^{m}$ depends only on the homotopy class of $g$.

The correspondence $g \longrightarrow g^{-1}(B)$ induces a natural homomorphism from $\pi_{m}\left(T, \star_{E}\right)$ to $\Omega_{m-k}$.

Proof. Let $\rho:[0,1) \longrightarrow[0,2)$ be a smooth map so that $\rho(x)=x$ for all $x \leq \frac{1}{2}$. Define

$$
\widetilde{\rho}_{t}: E^{<1} \longrightarrow E^{<2}, \quad \widetilde{\rho}(v) \equiv((1-t)+t \rho(|v|) /|v|) v
$$

be a smooth family of smooth maps. We have that $\widetilde{\rho}_{0}$ is the natural inclusion map and $\widetilde{\rho}_{1}$ is a diffeomorphism.

Define $V \equiv f^{-1}\left(E^{<1}\right)$. Define

$$
\tilde{f}_{t}: V \longrightarrow E^{<2}, \quad \widetilde{f}_{t} \equiv \widetilde{\rho}_{t} \circ f, \quad \forall t \in[0,1] .
$$

Let $V_{1} \equiv \widetilde{f}_{1}^{-1}\left(E^{<1}\right)$ and let $K \subset V$ be a closed set whose complement is relatively compact. By Corollary 1.9 combined with Lemma 1.11 there is a homotopy $\widetilde{g}_{t}: V \longrightarrow E^{<2}$ so that $\left.\widetilde{g}_{1}\right|_{U}$ is smooth is smooth and transverse to $B$ and $\left.\widetilde{g}_{t}\right|_{K}=\left.\widetilde{f}_{1}\right|_{K}$ for all $t \in[0,1]$.

Let

$$
\widetilde{h}_{t} \equiv\left\{\begin{array}{cl}
\widetilde{f}_{2 t} & \text { if } t \in[0,1 / 2] \\
\widetilde{g}_{2 t-1} & \text { if } t \in[1 / 2,1]
\end{array}\right.
$$

be the catenation of $\widetilde{f}_{t}$ and $\widetilde{g}_{t}$. Let $Q: E^{<2} \longrightarrow T(E)$ be the natural quotient map. Finally define

$$
h_{t}: S^{m} \longrightarrow T(E), \quad h_{t} \equiv Q \circ \widetilde{h}_{t}
$$

Then this is a homotopy from $f$ to a map $g \equiv h_{1}$ which is smooth on $g^{-1}\left(E^{<1}\right)$ and transverse to $B$.

We now need to show that if $h_{0}, h_{1}: S^{m} \longrightarrow T(E)$ are two homotopic continuous maps which are smooth on $h_{1}^{-1}\left(E^{<1}\right)$ and $h_{2}^{-1}\left(E^{<1}\right)$ and which are both transverse to $B$ then $h_{1}^{-1}(B)$ and $h_{2}^{-1}(B)$ are oriented cobordant. This is done as follows: Let $h:[0,1] \times S^{m} \longrightarrow$ $T(E)$ be this continuous homotopy. Using the same techniques as above one can perturb $h$ so that $\left.h\right|_{h^{-1}\left(E^{<1}\right)}: h^{-1}\left(E^{<1}\right) \longrightarrow E^{<1}$ is smooth and so that $\left.h\right|_{\{0\} \times S^{m}}=h_{0}$ and $\left.h\right|_{\{1\} \times S^{m}}=h_{1}$. Then $h^{-1}(B)$ is an oriented cobordism between $h_{1}^{-1}(B)$ and $h_{2}^{-1}(B)$.

Hence we get a natural map:

$$
T: \pi_{m}\left(T, \star_{E}\right) \longrightarrow \Omega_{m-k}
$$

We now need to show that this is a homomorphism. Let $f_{1}: S^{m} \longrightarrow T(E)$ and $f_{2}$ : $S^{m} \longrightarrow T(E)$ be continuous maps sending a marked point $\star \in S^{m}$ to $\star_{E} \in T(E)$ and so that $\left.f_{i}\right|_{f_{i}^{-1}\left(E^{<1}\right)}$ is smooth and transverse to $B$. Let $q: S^{m} \longrightarrow S^{m} \vee S^{m}$ be the natural quotient map collapsing the equator to the marked point $\star \in S^{m} \vee S^{m}$. We also assume that $\star$ lies on the equator of $S^{m}$. Then $f \equiv q \circ\left(f_{1} \vee f_{2}\right): S^{m} \longrightarrow T(E)$ is a continuous map so that $\left.f\right|_{f^{-1}\left(E^{<1}\right)}$ is smooth and transverse to 0 and $f^{-1}(B)=f_{1}^{-1}(B) \sqcup f_{2}^{-1}(B)$. Hence $T$ is a group homomorphism.

Theorem 1.13. (Thom) For $k>n+1$, the homotopy group

$$
\pi_{n+k}\left(T\left(\widetilde{\gamma}_{\infty}^{k}\right), \star_{\tilde{\gamma}_{\infty}^{k}}\right)
$$

is canonically isomorphic to the oriented cobordism group $\Omega_{n}$.
Similarly

$$
\pi_{n+k}\left(T\left(\gamma_{\infty}^{k}\right), \star_{\gamma_{\infty}^{k}}\right)
$$

is canonically isomorphic to the unoriented cobordism group of $n$-manifolds.
We will just focus on the oriented case. We will also only prove surjectivity (as this is sufficient for our purposes).

Lemma 1.14. If $k \geq n$ and $p \geq n$, then the natural ho homomorphism

$$
T: \pi_{n+k}\left(T\left(\gamma_{p}^{k}\right), \star_{\gamma_{p}^{k}}\right) \longrightarrow \Omega_{n}
$$

from Theorem 1.12 is surjective.
Proof. Let $[M] \in \Omega_{n}$ where $M$ is an oriented $n$-manifold. By the Whitney embedding theorem, we have a smooth embedding $M \longrightarrow \mathbb{R}^{n+k}$. Let $\mathcal{N} \equiv \mathcal{N}_{\mathbb{R}^{n+k}} M$ be the normal bundle of $M$ in $\mathbb{R}^{n+k}$. Choose a Euclidean metric on $\mathcal{N}$ so that we have a regularization $\Psi: \mathcal{N}<2 \longrightarrow \mathbb{R}^{n+k}$ (this can be done so long as the metric is small enough).

Let

$$
G: \mathcal{N} \xrightarrow{\alpha} \widetilde{\gamma}_{n}^{k} \xrightarrow{\iota} \widetilde{\gamma}_{p}^{k}
$$

be the composition of the Gauss map $\alpha$ with the natural inclusion map $\iota$. Then we get an induced map

$$
\bar{G}: T(\mathcal{N}) \longrightarrow T\left(\widetilde{\gamma}_{n}^{k}\right)
$$

Let $S^{n+k}$ be the sphere viewed as the one point compactification of $\mathbb{R}^{n+k}$. Then we have a natural quotient map

$$
Q: S^{n+k} \longrightarrow S^{n+k} /\left(S^{n+k}-\operatorname{Im}(\Psi)\right)=T(\mathcal{N})
$$

collapsing everything outside the tubular neighborhood of $M$ to a point. Hence we have a natural composition:

$$
f \equiv \bar{G} \circ Q: S^{n+k} \longrightarrow T\left(\widetilde{\gamma}_{n}^{k}\right) .
$$

Since $f$ is smooth on $f^{-1}\left(\left(\widetilde{\gamma}_{p}^{k}\right)^{<1}\right)$ and since $f$ is transverse to 0 and $f^{-1}(M)=M$ we get that the image of $T$ contains $M$.

Theorem 1.15. $\Omega_{n}$ is finite if $n \neq 0 \bmod 4$ and has rank $p(r)$ if $n=4 r$ for some $r$.
Proof. From the previous theorem, $\Omega_{n}$ is isomorphic to $\pi_{n+k}\left(T\left(\gamma_{p}^{k}\right), \star_{\gamma_{p}^{k}}\right)$ for $k, p \geq n$ which in turn is $\mathcal{C}$-isomorphic to $H_{n}\left(\widetilde{G r}_{k}\left(\mathbb{R}^{n+p}\right)\right.$ by Corollary 1.6. Also $H_{n}\left(\widetilde{G r}_{k}\left(\mathbb{R}^{n+p} ; \mathbb{Q}\right)\right.$ is freely generated by the classes

$$
p_{i_{1}}\left(\widetilde{\gamma}_{p}^{k}\right) \cup \cdots \cup p_{i_{r}}\left(\widetilde{\gamma}_{p}^{k}\right), \quad i_{1}, \cdots, i_{r} \text { is a partition of } n / 4
$$

if $n$ is divisible by 4 and is 0 otherwise. This proves the theorem.
Corollary 1.16. $\Omega_{*} \otimes_{\mathbb{Z}} \mathbb{Q}$ is freely generated as an algebra by $\left[\mathbb{C P}^{2}\right],\left[\mathbb{C P}^{4}\right],\left[\mathbb{C P}^{6}\right] \ldots$.
Proof. First of all $\Omega_{n} \otimes_{\mathbb{Z}} \mathbb{Q}$ is non-zero if and only if $n=4 r$ by the previous theorem. In the last lecture we showed that there is a surjection $\Omega_{4 r} \longrightarrow \mathbb{Z}^{p(r)}$ which sends a manifold $[M]$ to its Pontryagin numbers and hence there is a surjection

$$
\alpha_{r}: \Omega_{4 r} \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q}^{p(r)} .
$$

The previous theorem tells us that the rank of $\Omega_{4 r} \otimes_{\mathbb{Z}} \mathbb{Q}$ is $p(r)$ which implies that $\alpha_{r}$ is an isomorphism. This implies that $\Omega_{4 r} \otimes \mathbb{Q}$ is freely generated as a vector space by products

$$
\mathbb{C P}^{i_{1}} \times \cdots \mathbb{C P}^{i_{r}}, \quad i_{1}, \cdots, i_{r} \text { is a partition of } r .
$$

Hence $\Omega_{*} \otimes_{\mathbb{Z}} \mathbb{Q}$ is freely generated as an algebra by $\left[\mathbb{C P}^{2}\right],\left[\mathbb{C P}^{4}\right],\left[\mathbb{C P}^{6}\right] . \cdots$.
Corollary 1.17. Let $M^{n}$ be a smooth compact oriented manifold. Then $\sqcup_{j=1}^{k} M^{n}$ is the boundary of an oriented $n+1$-manifold for some $k \geq 1$ if and only if all the Pontryagin numbers of $M^{n}$ vanish.
Proof. We have that $\left[M^{n}\right] \in \Omega_{n} \otimes_{\mathbb{Z}} \mathbb{Q}$ is trivial if and only if all the Pontryagin numbers of $M^{n}$ vanish by the previous theorem (since the Pontryagin numbers do not depend on the choice of representative of $\left[M^{n}\right]$ and since every such representative is a product of even dimensional projective spaces). Also [ $M^{n}$ ] is trivial if and only if $\sqcup_{j=1}^{k} M^{n}$ is the boundary of an oriented $n+1$-manifold for some $k \geq 1$. These two statements give us our corollary.

A Theorem of Wall actually tells us that $M^{n}$ is the boundary of an oriented $n+1$-manifold if and only if all the Pontryagin numbers and Stiefel-Whitney classes vanish. This implies that $\Omega_{n}$ only has 2-torsion.

