
1. Thom Spaces and Transversality

Definition 1.1. Let π : E −→ B be a real k vector bundle with a Euclidean metric and
let E≥1 be the set of elements of norm ≥ 1. The Thom space T (E) of E is the quotient
E/E≥1. This has a preferred basepoint ?E = E≥1 ∈ E/E≥1. The complement T (E)− ?E is
equal to E<1 the subset of E consisting of vectors of norm less than 1.

Note that up to homeomorphism this space does not depend on the choice of Euclidean
metric on E.

Lemma 1.2. If the base B is a CW complex then T (E) is a k − 1 connected CW complex.

Proof. Let f : Dd −→ B be the characteristic map for a d-cell of B. Since f∗E is trivial,
we get that f∗E≤1 is a product Dd × Dk which is a d + k cell. Then T (E) has a zero cell
corresponding to ?E and then all the other cells have characteristic maps corresponding to
the natural map f∗(E≤1) −→ T (E) giving us a d + k-cell of T (E). (Exercise: fill in the
details). �

Lemma 1.3. We have that Hi(B) is canonically isomorphic to Hi+k(T (E)).

Proof. Since E≥1 is homotopic to E−B, we have that this follows from the Thom isomorphism
theorem. �

Definition 1.4. We let C be the class of all finite abelian groups. A homomorphism h :
A −→ B between abelian groups is called a C-isomorphism if h−1(0) and h(A)/B are in C

(I.e. they are finite dimensional).

Theorem 1.5. Let X be a finite CW complex which is k− 1 connected. Then the Hurewicz
homomorphism

πr(X) −→ Hr(X;Z)

is a C-isomorphism for r < 2k − 1.

Proof. This is true of X is an n sphere when n ≥ k since πr(S
n) is finite for r > 2n− 1 (See

Spanier).
If this theorem is true for k − 1-connected finite CW complexes X and X ′ then it is true

for X ×X ′ by the Künneth formula. Hence by applying the Hurewicz theorem to the pair
(X ×X ′, X ∨X ′) we get

πr(X ∨X ′) ∼= πr(X ×X ′) ∼= πr(X)⊕ πr(X ′)

for r < 2k − 1. Therefore our theorem is true for any wedge sum of spheres.
Finally let X be an arbitrary k − 1-connected finite CW complex. Since the homotopy

groups of X are finitely generated (Spanier), we can choose a finite basis for the torsion free
part of πr(X) for each r < 2k and then combine these maps into a single map

f : Sr1 ∨ · · · ∨ Srp −→ X.

Then f is a C-isomorphism of homotopy groups. By the Serre’s generalized Whitehead
theorem (Spanier page 512), this implies that it is a C-isomorphism of homology groups as
well and hence the theorem follows.

�

We have the following immediate corollary.
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Corollary 1.6. Let π : E −→ B be a rank k bundle where B is a finite CW complex. Then
the composition

πn+k(T (E)) −→ Hn+k(T (E);Z) −→ Hn(B;Z)

is a C-isomorphism.

Recall that we have the following theorem:

Theorem 1.7. (Steenrod Approximation Theorem) Let π : E −→ B be a smooth
vector bundle with a Euclidean metric. Let σ be a continuous section of this bundle. Then
for every δ > 0, there is a smooth section s so that |s(b)− σ(b)| < δ for all b ∈ B.

We get the following corollary of this theorem:

Corollary 1.8. Let f : M −→ N be a continuous map between smooth manifolds. Then f
is homotopic to a smooth map.

In fact we need a stronger corollary:

Corollary 1.9. Let f : M −→ M ′ be a continuous map between smooth manifolds and let
K ⊂ M be a closed subset and U ⊂ M an open set whose closure is compact and disjoint
from K. Then there is a continuous map f1 : M −→ M ′ homotopic to f so that f1|U is
smooth and f1|K = f |K .

Proof. Choose a smooth embedding M ′ ⊂ RN and let Ψ : N −→ Rn be a tubular neighbor-
hood. Define

P : Im(Ψ) −→M ′, P (x) = πNRNM
′Ψ−1(x)

where
πNRNM

′ : NRNM ′ −→M ′

is the normal bundle of M ′ in Rn.
Let V1 ⊂M ′ be a relatively compact open set containing U . Let δ > 0 be small enough so

that for each x ∈ V1, the ball of radius δ in Rn centered at x is contained inside Im(Ψ).
Recall that there is a natural 1−1 correspondence between continuous (resp. smooth) maps

M −→ Rn and sections of the trivial bundle M × Rn given by sending a map s : M −→ Rn
to the section s̃ : M −→M ×Rn, s̃(x) = (x, s(x)). As a result, we can apply the Steenrod
Approximation to the trivial bundle M × Rn so that we get a smooth map g : M −→ Rn so
that |g(x)− f(x)| < δ for all x ∈M .

Now choose a smooth function ρ : M −→ [0, 1] so that ρ|U = 1 and ρ|M ′−V1 = 0. Now
define

gt : M −→M ′, gt(x) ≡ P (tρ(x)(g(x)− f(x)) + (1− ρ(x))f(x)) ∀ t ∈ [0, 1].

Then gt is a homotopy from f to f1 ≡ g1 and f1|K = f |K and f1|U = P (g(x))|U which is
smooth. �

Definition 1.10. Let f : M −→M ′ be a smooth map and N ⊂M ′ a smooth submanifold.
Let πNM′N

: NM ′N −→ N be the normal bundle of N inside M ′. Let Q : TM ′|N −→ NM ′N
be the natural quotient map. We say that f is transverse to N if the natural map

πNM′N
◦Q ◦Df |f∗(TM ′|N ) : f∗(TM ′|N ) −→ NM ′N

is surjective.
Equivalently f is transverse to N if the graph Γf ⊂ M ×M ′ of f is transverse to the

submanifold M ×N ⊂M ×M ′.
(Exercise: show these two definitions are the same).
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We will also need the following lemma:

Lemma 1.11. Let f : M −→M ′ be a continuous map between smooth manifolds where M
is compact (possibly with boundary). Let K ⊂ N be a compact set and U ⊂ N an open set
whose closure is disjoint from K. Then there is a smooth map F : Rk ×M −→ M ′ so that
F |0×M = f for some large k and a dense open subset U ⊂ Rk so that F |{x}×M is transverse
to N for all x ∈ U .

Proof. Let Γf be the graph of F . By the Thom Transversality theorem, there is a smooth
family of submanifolds

Γx ⊂M ×M ′, x ∈ Rk

and a dense open subset V ⊂ Rk so that Γx is transverse to M ×N if and only if x ∈ V .
Since Γx is a smooth family of submanifolds, there is a small ball B(δ) ⊂ Rk centered at

0 of radius δ so that Γx is transverse to {y} ×M ′ for all y ∈M and x ∈ Bδ. Then Γx is the
graph of a smooth map fx : M −→M ′ for all x ∈ B(δ). Define

F : B(δ)×M −→M ′, F (x, y) ≡ fx(y)

and U ≡ V ∩ B(δ). Then F has the properties we want after identifying the ball B(δ)
diffeomorphically with Rk. �

Theorem 1.12. Let π : E −→ B be a smooth real oriented rank k vector bundle with
a choice of Euclidean metric. Every continuous map f : Sm −→ T (E) is homotopic to
g : Sm −→ T (E) so that

g|g−1(E<1) : g−1(E<1) −→ E<1

is smooth and transverse to the zero section B. The oriented cobordism class of the (m− k)-
manifold g−1(B) ⊂ Sm depends only on the homotopy class of g.

The correspondence g −→ g−1(B) induces a natural homomorphism from πm(T, ?E) to
Ωm−k.

Proof. Let ρ : [0, 1) −→ [0, 2) be a smooth map so that ρ(x) = x for all x ≤ 1
2 . Define

ρ̃t : E<1 −→ E<2, ρ̃(v) ≡ ((1− t) + tρ(|v|)/|v|)v

be a smooth family of smooth maps. We have that ρ̃0 is the natural inclusion map and ρ̃1 is
a diffeomorphism.

Define V ≡ f−1(E<1). Define

f̃t : V −→ E<2, f̃t ≡ ρ̃t ◦ f, ∀t ∈ [0, 1].

Let V1 ≡ f̃−11 (E<1) and let K ⊂ V be a closed set whose complement is relatively compact.
By Corollary 1.9 combined with Lemma 1.11 there is a homotopy g̃t : V −→ E<2 so that

g̃1|U is smooth is smooth and transverse to B and g̃t|K = f̃1|K for all t ∈ [0, 1].
Let

h̃t ≡
{

f̃2t if t ∈ [0, 1/2]
g̃2t−1 if t ∈ [1/2, 1]

be the catenation of f̃t and g̃t. Let Q : E<2 −→ T (E) be the natural quotient map. Finally
define

ht : Sm −→ T (E), ht ≡ Q ◦ h̃t.
Then this is a homotopy from f to a map g ≡ h1 which is smooth on g−1(E<1) and transverse
to B.
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We now need to show that if h0, h1 : Sm −→ T (E) are two homotopic continuous maps
which are smooth on h−11 (E<1) and h−12 (E<1) and which are both transverse to B then

h−11 (B) and h−12 (B) are oriented cobordant. This is done as follows: Let h : [0, 1]× Sm −→
T (E) be this continuous homotopy. Using the same techniques as above one can perturb h so
that h|h−1(E<1) : h−1(E<1) −→ E<1 is smooth and so that h|{0}×Sm = h0 and h|{1}×Sm = h1.

Then h−1(B) is an oriented cobordism between h−11 (B) and h−12 (B).
Hence we get a natural map:

T : πm(T, ?E) −→ Ωm−k.

We now need to show that this is a homomorphism. Let f1 : Sm −→ T (E) and f2 :
Sm −→ T (E) be continuous maps sending a marked point ? ∈ Sm to ?E ∈ T (E) and so that
fi|f−1

i (E<1) is smooth and transverse to B. Let q : Sm −→ Sm ∨ Sm be the natural quotient

map collapsing the equator to the marked point ? ∈ Sm ∨ Sm. We also assume that ? lies
on the equator of Sm. Then f ≡ q ◦ (f1 ∨ f2) : Sm −→ T (E) is a continuous map so that
f |f−1(E<1) is smooth and transverse to 0 and f−1(B) = f−11 (B)tf−12 (B). Hence T is a group
homomorphism. �

Theorem 1.13. (Thom) For k > n+ 1, the homotopy group

πn+k(T (γ̃k∞), ?γ̃k∞)

is canonically isomorphic to the oriented cobordism group Ωn.
Similarly

πn+k(T (γk∞), ?γk∞)

is canonically isomorphic to the unoriented cobordism group of n-manifolds.

We will just focus on the oriented case. We will also only prove surjectivity (as this is
sufficient for our purposes).

Lemma 1.14. If k ≥ n and p ≥ n, then the natural ho homomorphism

T : πn+k(T (γkp ), ?γkp ) −→ Ωn

from Theorem 1.12 is surjective.

Proof. Let [M ] ∈ Ωn where M is an oriented n-manifold. By the Whitney embedding theo-
rem, we have a smooth embeddingM −→ Rn+k. Let N ≡ NRn+kM be the normal bundle ofM
in Rn+k. Choose a Euclidean metric on N so that we have a regularization Ψ : N<2 −→ Rn+k
(this can be done so long as the metric is small enough).

Let
G : N

α−→ γ̃kn
ι−→ γ̃kp

be the composition of the Gauss map α with the natural inclusion map ι. Then we get an
induced map

G : T (N) −→ T (γ̃kn).

Let Sn+k be the sphere viewed as the one point compactification of Rn+k. Then we have a
natural quotient map

Q : Sn+k −→ Sn+k/(Sn+k − Im(Ψ)) = T (N)

collapsing everything outside the tubular neighborhood of M to a point. Hence we have a
natural composition:

f ≡ G ◦Q : Sn+k −→ T (γ̃kn).
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Since f is smooth on f−1((γ̃kp )<1) and since f is transverse to 0 and f−1(M) = M we get
that the image of T contains M . �

Theorem 1.15. Ωn is finite if n 6= 0 mod 4 and has rank p(r) if n = 4r for some r.

Proof. From the previous theorem, Ωn is isomorphic to πn+k(T (γkp ), ?γkp ) for k, p ≥ n which

in turn is C-isomorphic to Hn(G̃rk(Rn+p) by Corollary 1.6. Also Hn(G̃rk(Rn+p;Q) is freely
generated by the classes

pi1(γ̃kp ) ∪ · · · ∪ pir(γ̃kp ), i1, · · · , ir is a partition of n/4

if n is divisible by 4 and is 0 otherwise. This proves the theorem. �

Corollary 1.16. Ω∗ ⊗Z Q is freely generated as an algebra by [CP2], [CP4], [CP6]. · · · .

Proof. First of all Ωn ⊗Z Q is non-zero if and only if n = 4r by the previous theorem. In the
last lecture we showed that there is a surjection Ω4r −→ Zp(r) which sends a manifold [M ] to
its Pontryagin numbers and hence there is a surjection

αr : Ω4r ⊗Z Q −→ Qp(r).

The previous theorem tells us that the rank of Ω4r ⊗Z Q is p(r) which implies that αr is an
isomorphism. This implies that Ω4r ⊗Q is freely generated as a vector space by products

CPi1 × · · ·CPir , i1, · · · , ir is a partition of r.

Hence Ω∗ ⊗Z Q is freely generated as an algebra by [CP2], [CP4], [CP6]. · · · . �

Corollary 1.17. Let Mn be a smooth compact oriented manifold. Then tkj=1M
n is the

boundary of an oriented n + 1-manifold for some k ≥ 1 if and only if all the Pontryagin
numbers of Mn vanish.

Proof. We have that [Mn] ∈ Ωn⊗ZQ is trivial if and only if all the Pontryagin numbers of Mn

vanish by the previous theorem (since the Pontryagin numbers do not depend on the choice
of representative of [Mn] and since every such representative is a product of even dimensional
projective spaces). Also [Mn] is trivial if and only if tkj=1M

n is the boundary of an oriented
n+ 1-manifold for some k ≥ 1. These two statements give us our corollary. �

A Theorem of Wall actually tells us that Mn is the boundary of an oriented n+1-manifold
if and only if all the Pontryagin numbers and Stiefel-Whitney classes vanish. This implies
that Ωn only has 2-torsion.


