1. MULTIPLICATIVE SEQUENCES AND THE HIRZEBRUCH SIGNATURE THEOREM

Definition 1.1. Let A* = @ieNzoAi be a graded algebra over a commutative ring A with

unit. We write A to be the ring of formal series ag + a1 + ag + --- where a; € A? for all
i € N>g. The set of units (K™)* is equal to the set of sequences 1+ aj + -+ where a; € A'.
Let Kq(x1), Ko(x1,x2), -+ be a sequence of polynomial with coefficients in A. so that if the
degree of x; is 7 for each @ € N>, then K; has degree n. For eacha =1+a; +ax+--- € Al
define

K(a) =14 Ki(a1) + Kaz(a1,a2) +--- .

The polynomials Kj, Ko, -+ is called a multiplicative sequence of polynomials if
K(ab) = K(a)K(b) for all a,b € (A1),

Example 1.2.
Kk(ml,--- ,:L‘k) :)\kxk, Vk‘ENzl

is a multiplicative sequence of polynomials for all A € A.
Example 1.3.
K(a)=a!
defines a multiplicative sequence with
Ki(z1) = —x1
Ko(x1,x9) = :1:% — X9
Ks(x1,x9,23) = —x? — 2x1T9 — T3
Ky(x1, 29,23, 24) = xi‘ — 3:1:%332 4 2x123 + 1’% — x4

since

al=1—(a1+as )+ (a1 +ag---)>—-
=1—a1+af—ay—af+2aay—az+ -

In general:

K, — Z (il 4o in)! (_xl)z‘l . (—l’n)i".

i1liol - 4,!
i1 +2igAnin=n, ;>0 L2 n

These polynomials are use to compare the Chern/Pontryagin/Stiefel Whitney classes of two
vector bundles whose Whitney sum is trivial.

Example 1.4. The polynomials
Kon—1(x1,+ ,22n—1) =0

KQn(xla te 7x2n) = 37727, —2Tp—1Tn41 + 2Tp—2Tpt2 - -+ 2(_1)n_1x1$2n—1 + 2(_1)nx2n

form a multiplicative sequence which compares Pontryagin classes with Chern classes of
complex vector bundles.

Suppose that A* = A[t] where ¢ has degree 1. Then A = A[[t]] is the ring of formal power
series in ¢.
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Lemma 1.5. (Hirzebruch)
Let
F@) =14+ Mt + dot? +--- € AT = A[[t]]
be a formal power series in t. Then there is a unique multiplicative sequence {K, }nen
satisfying
K(1+1t) = f(¢)
(or equivalently, the coefficient of 2] in K, is A,).

Definition 1.6. The multiplicative sequence belonging to f(t) is the unique multiplicative
{ K, }nen sequence satisfying K (1 +t¢) = f(t) as in the above lemma.

Example 1.7. The multiplicative sequence belonging to
ft) =1+ M+ N2t2+ ...

is the one from Example 1.2.
The multiplicative sequence belonging to

fO)=1—t+t> 13+

is the one from Example 1.3.

The multiplicative sequence belonging to

ft) =14+

is the one from Example 1.4.
Proof of Lemma 1.5. Uniqueness:

Let Aft1,-- - ,t,] be the polynomial ring where ¢; has degree 1 for all i. Let o = [[;", (1+¢;).
Then the ith elementary symmetric polynomial o; is the homogeneous part of o of degree i.

Hence
o=14o01+o02+---.

Therefore
K(l4+oi+o2+-)=1+Ki(o1)+ Ka(o2) +---
n n n
= K(H(1+ti)) = HK(1+ti) = Hf(ti)'
i=1 i=1 i=1
Therefore K, (01, -+ ,05) is the homogeneous part of [}, f(¢;) of degree n. Since o1,--- , 0y

are algebraically independent, this uniquely determines K.

FExistence:
For any partition 41, --- , %, of n, we define A\f = A{Ag--- A,.. Define
Kn(017 T 7an) = ZAISI(O-].’ e 7Un)
I
where we sum over all partitions I of n. Here s;(o1,- - ,0y) is the unique polynomial in the

elementary symmetric polynomials equal to Zp tf‘l(l) . -tif(r) where we sum over all permu-
tations p of {1,--- ,7}.
Define
st (L4 Lt +19t? + ) = sp(lit, 1ot - - 1t").
Then
sr(ab) = > sy(a)su(b)

HJ=I



for all a,b € (A[[t]])*. Therefore
K(ab) = Arsi(ab) =Y A1 Y su(a)ss(0) =Y Y Agsgla)rsss(b) = K(a)K(b)
I I HJ=I I HJ=I

for all a,b € (A[[t]])*. Hence K is multiplicative.
The coefficient of o} of K,,(01,-+ ,0p) is Ay. O

Definition 1.8. Let {K,,},en be a multiplicative sequence of polynomials. Let M™ be an
oriented m-manifold. The K-genus K[M"™] is 0 of m is not divisible by 4. If m = 4k then
K[M™] = py(TM™) U pp(TM™)[par].

Lemma 1.9. The map M — K[M] descends to a ring homomorphism
Q. — Q.

Hence we get an induced map

Proof. Since Pontryagin numbers are cobordism invariants, this descends to a map 2, — Q.
This map is additive since addition is given by disjoint union. If p (resp. p) is the total
Pontryagin class of M (resp. M’) then the total Pontryagin class of M x M’ is p x p’ modulo
2. Also K(p x p/) = K(p) x K(p') since (K,)nen is a multiplicative sequence modulo 2.
Hence K(p x p')[M x M'] = (—=1)"" K (p)[M]K (p)[M'] where m = dim(M) and m' =
dim(M’). Since these numbers are non-zero only when m, m’ are divisible by 4, we get

K(pxp)[M x M'] = K(p)[M]K (p")[M'] and hence we get a ring homomorphism. O
Definition 1.10. The signature o(M) of a compact oriented manifold M™ is defined to be
0 if m is not divisible by 4. If m = 4k then it is defined as follows: Choose a basis aq, - - - , a,
of H*(M:;Q) so that the symmetric matrix

(a; U a;)[M]

is diagonal. Then o (M) is defined to be the number of positive entries minus the number of
negative entries in this diagonal matrix (in other words, it is the signature of the quadratic
form

Qu : H*(M;Q) — Q. Qu(a) = (aUa)[M].
)
Lemma 1.11. (Thom) The signature o(M) satisfies:
(1) es(MUM')=0(M)+o(M'),
(2) o(M x M') =o(M)o(M') and
(3) if M is the oriented boundary of a manifold then o(M) = 0.

Part (1) and (2) from this lemma are left as an exercise. We will focus on proving part
(3). We need some preliminary lemmas and definitions.

Definition 1.12. Let B: V®V — Q be a non-degenerate bilinear form. For any subspace
W CV, wedefine Wt ={veV : Blv,w)=0Ywe W}

A subspace L C V is isotropic if B| gz, = 0. It is Lagrangian if dim(L) = dim(V).
Equivalently L is Lagrangian if and only if L and L' are isotropic. (exercise).

We leave the proof of this lemma as a linear algebra exercise.
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Lemma 1.13. Suppose that B : V®V — Q is a non-degenerate bilinear form and suppose
that V admits a Lagrangian subspace. Then the signature of the associated quadratic form
B(v,v) is zero.

Lemma 1.14. Let M be a 4k-manifold which is the boundary of an oriented 4k+1-manifold
W. Let ¢ : M — W be the natural inclusion map. Then the image of

s MW, Q) — HPM(M; Q)
is isotropic with respect to the quadratic form Q.
Proof. Let ¢,d € H*(W;Q). Then
Feudtd([M]) = (eud)(OW]) =do*(cud)([W]) =0.
]

Proof of Lemma 1.11. Suppose M is the oriented boundary of an oriented 4k 4 1-manifold
W and let « : M — W be the inclusion map. We write PD(a) for the Poincaré-dual of a
class a € H,(M;Q) or a € H*(M;Q). Also we have that the map

Dy : H*(W;Q) — Hoyppr (W, M;Q), a — an[W].

is an isomorphism (Lefschetz duality). Again we write LD(a) for the Lefschetz dual of
a € H** 1 (W,0W;Q).
Consider the commutative diagram:

H?(W;Q) L’H%(M; Q—H? (W, M;Q
= = |2
Hojo1 (W, M; Q) Hapo(M; Q) —— Ho (N Q)

Here the vertical arrows are Poincaré or Lefschetz duality maps and the horizontal arrows
form a long exact sequence. This means that the Poincaré dual of ker(t,) is equal to the
image of +*. Hence dim ker(t) = dim Im(.*).

Also: x € Im(.*)* iff x U *(e)([M]) = 0, ¥V ¢ € H**(W;Q) iff ,*(c)(PD(z)) =0V ¢ €
H?*(W;Q) iff c(te(PD(z))) = 0V ¢ € H*(W;Q) iff 1.(PD(z)) = 0. Which implies that
Im(:*)* = PD(ker(ss)). Hence dim ker(t,) = dim(H?**(M;Q)) — dim(Im(¢*)). Therefore
dim(Im(¢*)) = dim(H?*(M;Q))/2. Also be the previous lemma, Im(:*) is isotropic and
hence it is Lagrangian. Hence the signature is 0. O

Theorem 1.15. (Hirzebruch Signature Theorem)
Let (Lg(x1, -+ ,2k))ken be the multiplicative sequence of polynomials belonging to the
power series

1 1
Vt/tanh(Vt) =1 + 3t 4—5152 4+ (=D)L Bk k) -
Then the signature o(M**) of any smooth compact oriented 4k-manifold M is equal to the
L-genus of [M].

Here By is the kth Bernoulli number. They are defined using the series: ett—l =

[e'e) tm
> m=0 Bm'mr-

The first three L-polynomials are

1

Li(p1) = 3P



1
Lo(p1,p2) = £(7p2 — )

1
Ly(p1, p2, p3) = = (62p3 — 13pops + 2p7).

Proof of the Hirzebruch signature theorem. Since the correspondences M — o(M) and M —
L(M) induce algebra homomorphisms

Q. Xz Q — Q
it is sufficient for us to check the theorem for the generators [CP?*],.cy of this algebra.
The signature of CP?* is 1 (Exercise).

We now need to compute Lj[CP?*]. The Pontryagin class of CP?* is p = (1 + u?)?*+1,
Also the multiplicative sequence (Ly)ken by definition satisfies
L(1 + v?) = Vu2/tanh(Vu?2) = u/ tanh(u).
Therefore
L(p)[M] = L((1 +u*)** 1) [M] = (L(1 + u?))** 1 [M].
This is the coefficient of u?* in the power series for (u/tanh(u))?++!
formula this coefficient is equal to:

1 }'{ 1 22klgy 1 7{ dz v=tanh(z) 1 ﬂ{ dv _
2m; | 22k+ltanh(z)26+1  2m; [ tanh(2)2A+1 2@ [ (1 —o2)u2kl

. By Cauchy’s integral

0o 2
1 =1V
i f Q=)
o 2kt
Hence L[CP?] = ¢(CP?*) = 1 which implies that L[M] = o(M) for all oriented manifolds
M. U

Corollary 1.16. The L-genus is always an integer.
This is because the signature is always an integer.
Corollary 1.17. The L-genus is a homotopy invariant of M.

Again this is true since the signature is a homotopy invariant.



