
1. Multiplicative Sequences and the Hirzebruch Signature Theorem

Definition 1.1. Let A∗ ≡ ⊕i∈N≥0
Ai be a graded algebra over a commutative ring Λ with

unit. We write AΠ to be the ring of formal series a0 + a1 + a2 + · · · where ai ∈ Ai for all
i ∈ N≥0. The set of units (KΠ)× is equal to the set of sequences 1 + a1 + · · · where ai ∈ Ai.
Let K1(x1),K2(x1, x2), · · · be a sequence of polynomial with coefficients in Λ. so that if the
degree of xi is i for each i ∈ N≥1, then Ki has degree n. For each a = 1 + a1 + a2 + · · · ∈ AΠ,
define

K(a) ≡ 1 +K1(a1) +K2(a1, a2) + · · · .
The polynomials K1,K2, · · · is called a multiplicative sequence of polynomials if

K(ab) = K(a)K(b) for all a, b ∈ (AΠ)×.

Example 1.2.

Kk(x1, · · · , xk) = λkxk, ∀ k ∈ N≥1

is a multiplicative sequence of polynomials for all λ ∈ Λ.

Example 1.3.

K(a) = a−1

defines a multiplicative sequence with

K1(x1) = −x1

K2(x1, x2) = x2
1 − x2

K3(x1, x2, x3) = −x3
1 − 2x1x2 − x3

K4(x1, x2, x3, x4) = x4
1 − 3x2

1x2 + 2x1x3 + x2
2 − x4

since

a−1 = 1− (a1 + a2 · · · ) + (a1 + a2 · · · )2 − · · ·

= 1− a1 + a2
1 − a2 − a3

1 + 2a1a2 − a3 + · · ·
In general:

Kn =
∑

i1+2i2···+nin=n, ij≥0

(i1 + · · ·+ in)!

i1!i2! · · · in!
(−x1)i1 · · · (−xn)in .

These polynomials are use to compare the Chern/Pontryagin/Stiefel Whitney classes of two
vector bundles whose Whitney sum is trivial.

Example 1.4. The polynomials

K2n−1(x1, · · · , x2n−1) = 0

K2n(x1, · · · , x2n) = x2
n − 2xn−1xn+1 + 2xn−2xn+2 · · ·+ 2(−1)n−1x1x2n−1 + 2(−1)nx2n

form a multiplicative sequence which compares Pontryagin classes with Chern classes of
complex vector bundles.

Suppose that A∗ = Λ[t] where t has degree 1. Then AΠ = Λ[[t]] is the ring of formal power
series in t.
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Lemma 1.5. (Hirzebruch)
Let

f(t) = 1 + λ1t+ λ2t
2 + · · · ∈ AΠ = Λ[[t]]

be a formal power series in t. Then there is a unique multiplicative sequence {Kn}n∈N
satisfying

K(1 + t) = f(t)

(or equivalently, the coefficient of xn1 in Kn is λn).

Definition 1.6. The multiplicative sequence belonging to f(t) is the unique multiplicative
{Kn}n∈N sequence satisfying K(1 + t) = f(t) as in the above lemma.

Example 1.7. The multiplicative sequence belonging to

f(t) = 1 + λt+ λ2t2 + · · ·
is the one from Example 1.2.

The multiplicative sequence belonging to

f(t) = 1− t+ t2 − t3 + · · ·
is the one from Example 1.3.

The multiplicative sequence belonging to

f(t) = 1 + t2

is the one from Example 1.4.

Proof of Lemma 1.5. Uniqueness:
Let Λ[t1, · · · , tn] be the polynomial ring where ti has degree 1 for all i. Let σ =

∏n
i=1(1+ti).

Then the ith elementary symmetric polynomial σi is the homogeneous part of σ of degree i.
Hence

σ = 1 + σ1 + σ2 + · · · .
Therefore

K(1 + σ1 + σ2 + · · · ) = 1 +K1(σ1) +K2(σ2) + · · ·

= K(

n∏
i=1

(1 + ti)) =

n∏
i=1

K(1 + ti) =

n∏
i=1

f(ti).

Therefore Kn(σ1, · · · , σn) is the homogeneous part of
∏n
i=1 f(ti) of degree n. Since σ1, · · · , σn

are algebraically independent, this uniquely determines Kn.

Existence:
For any partition i1, · · · , ir of n, we define λI ≡ λ1λ2 · · ·λr. Define

Kn(σ1, · · · , σn) ≡
∑
I

λIsI(σ1, · · · , σn)

where we sum over all partitions I of n. Here sI(σ1, · · · , σn) is the unique polynomial in the
elementary symmetric polynomials equal to

∑
p t
t1
σ(1) · · · t

tr
σ(r) where we sum over all permu-

tations p of {1, · · · , r}.
Define

sI(1 + l1t+ l2t
2 + · · · ) ≡ sI(l1t, l2t2, · · · , lntn).

Then
sI(ab) =

∑
HJ=I

sJ(a)sH(b)
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for all a, b ∈ (Λ[[t]])×. Therefore

K(ab) =
∑
I

λIsI(ab) =
∑
I

λI
∑
HJ=I

sH(a)sJ(b) =
∑
I

∑
HJ=I

ΛHsH(a)λJsJ(b) = K(a)K(b)

for all a, b ∈ (Λ[[t]])×. Hence K is multiplicative.
The coefficient of σn1 of Kn(σ1, · · · , σn) is λn. �

Definition 1.8. Let {Kn}n∈N be a multiplicative sequence of polynomials. Let Mm be an
oriented m-manifold. The K-genus K[Mm] is 0 of m is not divisible by 4. If m = 4k then
K[Mm] ≡ p1(TMm) ∪ · · · pk(TMm)[µM ].

Lemma 1.9. The map M −→ K[M ] descends to a ring homomorphism

Ω∗ −→ Q.

Hence we get an induced map

Ω∗ ⊗Z Q −→ Q.

Proof. Since Pontryagin numbers are cobordism invariants, this descends to a map Ω∗ −→ Q.
This map is additive since addition is given by disjoint union. If p (resp. p′) is the total
Pontryagin class of M (resp. M ′) then the total Pontryagin class of M ×M ′ is p× p′ modulo
2. Also K(p × p′) = K(p) × K(p′) since (Kn)n∈N is a multiplicative sequence modulo 2.

Hence K(p × p′)[M × M ′] = (−1)mm
′
K(p)[M ]K(p′)[M ′] where m = dim(M) and m′ =

dim(M ′). Since these numbers are non-zero only when m, m′ are divisible by 4, we get
K(p× p′)[M ×M ′] = K(p)[M ]K(p′)[M ′] and hence we get a ring homomorphism. �

Definition 1.10. The signature σ(M) of a compact oriented manifold Mm is defined to be
0 if m is not divisible by 4. If m = 4k then it is defined as follows: Choose a basis a1, · · · , ar
of H2k(M ;Q) so that the symmetric matrix

(ai ∪ aj)[M ]

is diagonal. Then σ(M) is defined to be the number of positive entries minus the number of
negative entries in this diagonal matrix (in other words, it is the signature of the quadratic
form

QM : H2k(M ;Q) −→ Q, QM (a) ≡ (a ∪ a)[M ].

.)

Lemma 1.11. (Thom) The signature σ(M) satisfies:

(1) σ(M tM ′) = σ(M) + σ(M ′),
(2) σ(M ×M ′) = σ(M)σ(M ′) and
(3) if M is the oriented boundary of a manifold then σ(M) = 0.

Part (1) and (2) from this lemma are left as an exercise. We will focus on proving part
(3). We need some preliminary lemmas and definitions.

Definition 1.12. Let B : V ⊗V −→ Q be a non-degenerate bilinear form. For any subspace
W ⊂ V , we define W⊥ ≡ {v ∈ V : B(v, w) = 0 ∀ w ∈W}.

A subspace L ⊂ V is isotropic if B|L⊗L = 0. It is Lagrangian if dim(L) = 1
2dim(V ).

Equivalently L is Lagrangian if and only if L and L⊥ are isotropic. (exercise).

We leave the proof of this lemma as a linear algebra exercise.
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Lemma 1.13. Suppose that B : V ⊗V −→ Q is a non-degenerate bilinear form and suppose
that V admits a Lagrangian subspace. Then the signature of the associated quadratic form
B(v, v) is zero.

Lemma 1.14. Let M4k be a 4k-manifold which is the boundary of an oriented 4k+1-manifold
W . Let ι : M −→W be the natural inclusion map. Then the image of

ι∗ : H2k(W ;Q) −→ H2k(M ;Q)

is isotropic with respect to the quadratic form QM .

Proof. Let c, c′ ∈ H2k(W ;Q). Then

ι∗c ∪ ι∗c′([M ]) = ι∗(c ∪ c′)(∂[W ]) = δ ◦ ι∗(c ∪ c′)([W ]) = 0.

�

Proof of Lemma 1.11. Suppose M is the oriented boundary of an oriented 4k + 1-manifold
W and let ι : M −→ W be the inclusion map. We write PD(a) for the Poincaré-dual of a
class a ∈ H∗(M ;Q) or a ∈ H∗(M ;Q). Also we have that the map

DW : H2k(W ;Q) −→ H2k+1(W,M ;Q), α −→ α ∩ [W ].

is an isomorphism (Lefschetz duality). Again we write LD(a) for the Lefschetz dual of
a ∈ H2k+1(W,∂W ;Q).

Consider the commutative diagram:

H2k(W ;Q) H2k(M ;Q) H2k+1(W,M ;Q

H2k+1(W,M ;Q) H2k(M ;Q) H2k(N ;Q)

∼= ∼= ∼=

ι∗

ι∗

Here the vertical arrows are Poincaré or Lefschetz duality maps and the horizontal arrows
form a long exact sequence. This means that the Poincaré dual of ker(ι∗) is equal to the
image of ι∗. Hence dim ker(ι∗) = dim Im(ι∗).

Also: x ∈ Im(ι∗)⊥ iff x ∪ ι∗(c)([M ]) = 0, ∀ c ∈ H2k(W ;Q) iff ι∗(c)(PD(x)) = 0 ∀ c ∈
H2k(W ;Q) iff c(ι∗(PD(x))) = 0 ∀ c ∈ H2k(W ;Q) iff ι∗(PD(x)) = 0. Which implies that
Im(ι∗)⊥ = PD(ker(ι∗)). Hence dim ker(ι∗) = dim(H2k(M ;Q)) − dim(Im(ι∗)). Therefore
dim(Im(ι∗)) = dim(H2k(M ;Q))/2. Also be the previous lemma, Im(ι∗) is isotropic and
hence it is Lagrangian. Hence the signature is 0. �

Theorem 1.15. (Hirzebruch Signature Theorem)
Let (Lk(x1, · · · , xk))k∈N be the multiplicative sequence of polynomials belonging to the

power series

√
t/ tanh(

√
t) = 1 +

1

3
t− 1

45
t2 + · · ·+ (−1)k−122kBkt

k/(2k)! · · · .

Then the signature σ(M4k) of any smooth compact oriented 4k-manifold M is equal to the
L-genus of [M ].

Here Bk is the kth Bernoulli number. They are defined using the series: t
et−1 =∑∞

m=0Bm
tm

m! .
The first three L-polynomials are

L1(p1) =
1

3
p1
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L2(p1, p2) =
1

45
(7p2 − p2

1)

L3(p1, p2, p3) =
1

945
(62p3 − 13p2p1 + 2p3

1).

Proof of the Hirzebruch signature theorem. Since the correspondencesM −→ σ(M) andM −→
L(M) induce algebra homomorphisms

Ω∗ ⊗Z Q −→ Q
it is sufficient for us to check the theorem for the generators [CP2k]k∈N of this algebra.

The signature of CP2k is 1 (Exercise).
We now need to compute Lk[CP2k]. The Pontryagin class of CP2k is p = (1 + u2)2k+1.

Also the multiplicative sequence (Lk)k∈N by definition satisfies

L(1 + u2) =
√
u2/ tanh(

√
u2) = u/ tanh(u).

Therefore
L(p)[M ] = L((1 + u2)2k+1)[M ] = (L(1 + u2))2k+1[M ].

This is the coefficient of u2k in the power series for (u/ tanh(u))2k+1. By Cauchy’s integral
formula this coefficient is equal to:

1

2πi

∮
1

z2k+1

z2k+1dz

tanh(z)2k+1
=

1

2πi

∮
dz

tanh(z)2k+1

v=tanh(z)
=

1

2πi

∮
dv

(1− v2)v2k+1
=

1

2πi

∮
(
∑∞

j=1 v
2i)

v2k+1
dv = 1.

Hence L[CP2k] = σ(CP2k) = 1 which implies that L[M ] = σ(M) for all oriented manifolds
M . �

Corollary 1.16. The L-genus is always an integer.

This is because the signature is always an integer.

Corollary 1.17. The L-genus is a homotopy invariant of M .

Again this is true since the signature is a homotopy invariant.


