1. Multiplicative Sequences and the Hirzebruch Signature Theorem

Definition 1.1. Let $A^{*} \equiv \oplus_{i \in \mathbb{N}>0} A^{i}$ be a graded algebra over a commutative ring Λ with unit. We write A^{Π} to be the ring of formal series $a_{0}+a_{1}+a_{2}+\cdots$ where $a_{i} \in A^{i}$ for all $i \in \mathbb{N}_{\geq 0}$. The set of units $\left(K^{\Pi}\right)^{\times}$is equal to the set of sequences $1+a_{1}+\cdots$ where $a_{i} \in A^{i}$. Let $\bar{K}_{1}\left(x_{1}\right), K_{2}\left(x_{1}, x_{2}\right), \cdots$ be a sequence of polynomial with coefficients in Λ. so that if the degree of x_{i} is i for each $i \in \mathbb{N}_{\geq 1}$, then K_{i} has degree n. For each $a=1+a_{1}+a_{2}+\cdots \in A^{\Pi}$, define

$$
K(a) \equiv 1+K_{1}\left(a_{1}\right)+K_{2}\left(a_{1}, a_{2}\right)+\cdots .
$$

The polynomials K_{1}, K_{2}, \cdots is called a multiplicative sequence of polynomials if $K(a b)=K(a) K(b)$ for all $a, b \in\left(A^{\Pi}\right)^{\times}$.

Example 1.2.

$$
K_{k}\left(x_{1}, \cdots, x_{k}\right)=\lambda^{k} x_{k}, \quad \forall k \in \mathbb{N}_{\geq 1}
$$

is a multiplicative sequence of polynomials for all $\lambda \in \Lambda$.

Example 1.3.

$$
K(a)=a^{-1}
$$

defines a multiplicative sequence with

$$
\begin{gathered}
K_{1}\left(x_{1}\right)=-x_{1} \\
K_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2} \\
K_{3}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}^{3}-2 x_{1} x_{2}-x_{3} \\
K_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{4}-3 x_{1}^{2} x_{2}+2 x_{1} x_{3}+x_{2}^{2}-x_{4}
\end{gathered}
$$

since

$$
\begin{gathered}
a^{-1}=1-\left(a_{1}+a_{2} \cdots\right)+\left(a_{1}+a_{2} \cdots\right)^{2}-\cdots \\
\quad=1-a_{1}+a_{1}^{2}-a_{2}-a_{1}^{3}+2 a_{1} a_{2}-a_{3}+\cdots
\end{gathered}
$$

In general:

$$
K_{n}=\sum_{i_{1}+2 i_{2} \cdots+n i_{n}=n, i_{j} \geq 0} \frac{\left(i_{1}+\cdots+i_{n}\right)!}{i_{1}!i_{2}!\cdots i_{n}!}\left(-x_{1}\right)^{i_{1}} \cdots\left(-x_{n}\right)^{i_{n}} .
$$

These polynomials are use to compare the Chern/Pontryagin/Stiefel Whitney classes of two vector bundles whose Whitney sum is trivial.

Example 1.4. The polynomials

$$
\begin{gathered}
K_{2 n-1}\left(x_{1}, \cdots, x_{2 n-1}\right)=0 \\
K_{2 n}\left(x_{1}, \cdots, x_{2 n}\right)=x_{n}^{2}-2 x_{n-1} x_{n+1}+2 x_{n-2} x_{n+2} \cdots+2(-1)^{n-1} x_{1} x_{2 n-1}+2(-1)^{n} x_{2 n}
\end{gathered}
$$

form a multiplicative sequence which compares Pontryagin classes with Chern classes of complex vector bundles.

Suppose that $A^{*}=\Lambda[t]$ where t has degree 1. Then $A^{\Pi}=\Lambda[t t]$ is the ring of formal power series in t.

Lemma 1.5. (Hirzebruch)
Let

$$
f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\cdots \in A^{\Pi}=\Lambda[[t]]
$$

be a formal power series in t. Then there is a unique multiplicative sequence $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ satisfying

$$
K(1+t)=f(t)
$$

(or equivalently, the coefficient of x_{1}^{n} in K_{n} is λ_{n}).
Definition 1.6. The multiplicative sequence belonging to $f(t)$ is the unique multiplicative $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ sequence satisfying $K(1+t)=f(t)$ as in the above lemma.
Example 1.7. The multiplicative sequence belonging to

$$
f(t)=1+\lambda t+\lambda^{2} t^{2}+\cdots
$$

is the one from Example 1.2.
The multiplicative sequence belonging to

$$
f(t)=1-t+t^{2}-t^{3}+\cdots
$$

is the one from Example 1.3.
The multiplicative sequence belonging to

$$
f(t)=1+t^{2}
$$

is the one from Example 1.4.

Proof of Lemma 1.5. Uniqueness:

Let $\Lambda\left[t_{1}, \cdots, t_{n}\right]$ be the polynomial ring where t_{i} has degree 1 for all i. Let $\sigma=\prod_{i=1}^{n}\left(1+t_{i}\right)$. Then the i th elementary symmetric polynomial σ_{i} is the homogeneous part of σ of degree i. Hence

$$
\sigma=1+\sigma_{1}+\sigma_{2}+\cdots
$$

Therefore

$$
\begin{aligned}
& K\left(1+\sigma_{1}+\sigma_{2}+\cdots\right)=1+K_{1}\left(\sigma_{1}\right)+K_{2}\left(\sigma_{2}\right)+\cdots \\
& \quad=K\left(\prod_{i=1}^{n}\left(1+t_{i}\right)\right)=\prod_{i=1}^{n} K\left(1+t_{i}\right)=\prod_{i=1}^{n} f\left(t_{i}\right) .
\end{aligned}
$$

Therefore $K_{n}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ is the homogeneous part of $\prod_{i=1}^{n} f\left(t_{i}\right)$ of degree n. Since $\sigma_{1}, \cdots, \sigma_{n}$ are algebraically independent, this uniquely determines K_{n}.

Existence:

For any partition i_{1}, \cdots, i_{r} of n, we define $\lambda_{I} \equiv \lambda_{1} \lambda_{2} \cdots \lambda_{r}$. Define

$$
K_{n}\left(\sigma_{1}, \cdots, \sigma_{n}\right) \equiv \sum_{I} \lambda_{I} s_{I}\left(\sigma_{1}, \cdots, \sigma_{n}\right)
$$

where we sum over all partitions I of n. Here $s_{I}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ is the unique polynomial in the elementary symmetric polynomials equal to $\sum_{p} t_{\sigma(1)}^{t_{1}} \cdots t_{\sigma(r)}^{t_{r}}$ where we sum over all permutations p of $\{1, \cdots, r\}$.

Define

$$
s_{I}\left(1+l_{1} t+l_{2} t^{2}+\cdots\right) \equiv s_{I}\left(l_{1} t, l_{2} t^{2}, \cdots, l_{n} t^{n}\right)
$$

Then

$$
s_{I}(a b)=\sum_{H J=I} s_{J}(a) s_{H}(b)
$$

for all $a, b \in(\Lambda[[t]])^{\times}$. Therefore

$$
K(a b)=\sum_{I} \lambda_{I} s_{I}(a b)=\sum_{I} \lambda_{I} \sum_{H J=I} s_{H}(a) s_{J}(b)=\sum_{I} \sum_{H J=I} \Lambda_{H} s_{H}(a) \lambda_{J} s_{J}(b)=K(a) K(b)
$$

for all $a, b \in(\Lambda[[t]])^{\times}$. Hence K is multiplicative.
The coefficient of σ_{1}^{n} of $K_{n}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ is λ_{n}.
Definition 1.8. Let $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ be a multiplicative sequence of polynomials. Let M^{m} be an oriented m-manifold. The K-genus $K\left[M^{m}\right]$ is 0 of m is not divisible by 4 . If $m=4 k$ then $K\left[M^{m}\right] \equiv p_{1}\left(T M^{m}\right) \cup \cdots p_{k}\left(T M^{m}\right)\left[\mu_{M}\right]$.

Lemma 1.9. The map $M \longrightarrow K[M]$ descends to a ring homomorphism

$$
\Omega_{*} \longrightarrow \mathbb{Q} .
$$

Hence we get an induced map

$$
\Omega_{*} \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q} .
$$

Proof. Since Pontryagin numbers are cobordism invariants, this descends to a map $\Omega_{*} \longrightarrow \mathbb{Q}$. This map is additive since addition is given by disjoint union. If p (resp. p^{\prime}) is the total Pontryagin class of M (resp. M^{\prime}) then the total Pontryagin class of $M \times M^{\prime}$ is $p \times p^{\prime}$ modulo 2. Also $K\left(p \times p^{\prime}\right)=K(p) \times K\left(p^{\prime}\right)$ since $\left(K_{n}\right)_{n \in \mathbb{N}}$ is a multiplicative sequence modulo 2 . Hence $K\left(p \times p^{\prime}\right)\left[M \times M^{\prime}\right]=(-1)^{m m^{\prime}} K(p)[M] K\left(p^{\prime}\right)\left[M^{\prime}\right]$ where $m=\operatorname{dim}(M)$ and $m^{\prime}=$ $\operatorname{dim}\left(M^{\prime}\right)$. Since these numbers are non-zero only when m, m^{\prime} are divisible by 4 , we get $K\left(p \times p^{\prime}\right)\left[M \times M^{\prime}\right]=K(p)[M] K\left(p^{\prime}\right)\left[M^{\prime}\right]$ and hence we get a ring homomorphism.

Definition 1.10. The signature $\sigma(M)$ of a compact oriented manifold M^{m} is defined to be 0 if m is not divisible by 4 . If $m=4 k$ then it is defined as follows: Choose a basis a_{1}, \cdots, a_{r} of $H^{2 k}(M ; \mathbb{Q})$ so that the symmetric matrix

$$
\left(a_{i} \cup a_{j}\right)[M]
$$

is diagonal. Then $\sigma(M)$ is defined to be the number of positive entries minus the number of negative entries in this diagonal matrix (in other words, it is the signature of the quadratic form

$$
Q_{M}: H^{2 k}(M ; \mathbb{Q}) \longrightarrow \mathbb{Q}, \quad Q_{M}(a) \equiv(a \cup a)[M] .
$$

.)
Lemma 1.11. (Thom) The signature $\sigma(M)$ satisfies:
(1) $\sigma\left(M \sqcup M^{\prime}\right)=\sigma(M)+\sigma\left(M^{\prime}\right)$,
(2) $\sigma\left(M \times M^{\prime}\right)=\sigma(M) \sigma\left(M^{\prime}\right)$ and
(3) if M is the oriented boundary of a manifold then $\sigma(M)=0$.

Part (1) and (2) from this lemma are left as an exercise. We will focus on proving part (3). We need some preliminary lemmas and definitions.

Definition 1.12. Let $B: V \otimes V \longrightarrow \mathbb{Q}$ be a non-degenerate bilinear form. For any subspace $W \subset V$, we define $W^{\perp} \equiv\{v \in V: B(v, w)=0 \forall w \in W\}$.

A subspace $L \subset V$ is isotropic if $\left.B\right|_{L \otimes L}=0$. It is Lagrangian if $\operatorname{dim}(L)=\frac{1}{2} \operatorname{dim}(V)$. Equivalently L is Lagrangian if and only if L and L^{\perp} are isotropic. (exercise).

We leave the proof of this lemma as a linear algebra exercise.

Lemma 1.13. Suppose that $B: V \otimes V \longrightarrow \mathbb{Q}$ is a non-degenerate bilinear form and suppose that V admits a Lagrangian subspace. Then the signature of the associated quadratic form $B(v, v)$ is zero.

Lemma 1.14. Let $M^{4 k}$ be a $4 k$-manifold which is the boundary of an oriented $4 k+1$-manifold W. Let $\iota: M \longrightarrow W$ be the natural inclusion map. Then the image of

$$
\iota^{*}: H^{2 k}(W ; \mathbb{Q}) \longrightarrow H^{2 k}(M ; \mathbb{Q})
$$

is isotropic with respect to the quadratic form Q_{M}.
Proof. Let $c, c^{\prime} \in H^{2 k}(W ; \mathbb{Q})$. Then

$$
\iota^{*} c \cup \iota^{*} c^{\prime}([M])=\iota^{*}\left(c \cup c^{\prime}\right)(\partial[W])=\delta \circ \iota^{*}\left(c \cup c^{\prime}\right)([W])=0 .
$$

Proof of Lemma 1.11. Suppose M is the oriented boundary of an oriented $4 k+1$-manifold W and let $\iota: M \longrightarrow W$ be the inclusion map. We write $P D(a)$ for the Poincaré-dual of a class $a \in H_{*}(M ; \mathbb{Q})$ or $a \in H^{*}(M ; \mathbb{Q})$. Also we have that the map

$$
D_{W}: H^{2 k}(W ; \mathbb{Q}) \longrightarrow H_{2 k+1}(W, M ; \mathbb{Q}), \quad \alpha \longrightarrow \alpha \cap[W] .
$$

is an isomorphism (Lefschetz duality). Again we write $L D(a)$ for the Lefschetz dual of $a \in H^{2 k+1}(W, \partial W ; \mathbb{Q})$.

Consider the commutative diagram:

Here the vertical arrows are Poincaré or Lefschetz duality maps and the horizontal arrows form a long exact sequence. This means that the Poincaré dual of $\operatorname{ker}\left(\iota_{*}\right)$ is equal to the image of ι^{*}. Hence $\operatorname{dim} \operatorname{ker}\left(\iota_{*}\right)=\operatorname{dim} \operatorname{Im}\left(\iota^{*}\right)$.

Also: $x \in \operatorname{Im}\left(\iota^{*}\right)^{\perp}$ iff $x \cup \iota^{*}(c)([M])=0, \forall c \in H^{2 k}(W ; \mathbb{Q})$ iff $\iota^{*}(c)(P D(x))=0 \forall c \in$ $H^{2 k}(W ; \mathbb{Q})$ iff $c\left(\iota_{*}(P D(x))\right)=0 \forall c \in H^{2 k}(W ; \mathbb{Q})$ iff $\iota_{*}(P D(x))=0$. Which implies that $\operatorname{Im}\left(\iota^{*}\right)^{\perp}=P D\left(\operatorname{ker}\left(\iota_{*}\right)\right)$. Hence $\operatorname{dim} \operatorname{ker}\left(\iota_{*}\right)=\operatorname{dim}\left(H^{2 k}(M ; \mathbb{Q})\right)-\operatorname{dim}\left(\operatorname{Im}\left(\iota^{*}\right)\right)$. Therefore $\operatorname{dim}\left(\operatorname{Im}\left(\iota^{*}\right)\right)=\operatorname{dim}\left(H^{2 k}(M ; \mathbb{Q})\right) / 2$. Also be the previous lemma, $\operatorname{Im}\left(\iota^{*}\right)$ is isotropic and hence it is Lagrangian. Hence the signature is 0 .
Theorem 1.15. (Hirzebruch Signature Theorem)
Let $\left(L_{k}\left(x_{1}, \cdots, x_{k}\right)\right)_{k \in \mathbb{N}}$ be the multiplicative sequence of polynomials belonging to the power series

$$
\sqrt{t} / \tanh (\sqrt{t})=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots+(-1)^{k-1} 2^{2 k} B_{k} t^{k} /(2 k)!\cdots .
$$

Then the signature $\sigma\left(M^{4 k}\right)$ of any smooth compact oriented $4 k$-manifold M is equal to the L-genus of $[M]$.

Here B_{k} is the k th Bernoulli number. They are defined using the series: $\frac{t}{e^{t}-1}=$ $\sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!}$.

The first three L-polynomials are

$$
L_{1}\left(p_{1}\right)=\frac{1}{3} p_{1}
$$

$$
\begin{gathered}
L_{2}\left(p_{1}, p_{2}\right)=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right) \\
L_{3}\left(p_{1}, p_{2}, p_{3}\right)=\frac{1}{945}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right) .
\end{gathered}
$$

Proof of the Hirzebruch signature theorem. Since the correspondences $M \longrightarrow \sigma(M)$ and $M \longrightarrow$ $L(M)$ induce algebra homomorphisms

$$
\Omega_{*} \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q}
$$

it is sufficient for us to check the theorem for the generators $\left[\mathbb{C P}^{2 k}\right]_{k \in \mathbb{N}}$ of this algebra.
The signature of $\mathbb{C P}^{2 k}$ is 1 (Exercise).
We now need to compute $L_{k}\left[\mathbb{C P}^{2 k}\right]$. The Pontryagin class of $\mathbb{C P}^{2 k}$ is $p=\left(1+u^{2}\right)^{2 k+1}$. Also the multiplicative sequence $\left(L_{k}\right)_{k \in \mathbb{N}}$ by definition satisfies

$$
L\left(1+u^{2}\right)=\sqrt{u^{2}} / \tanh \left(\sqrt{u^{2}}\right)=u / \tanh (u) .
$$

Therefore

$$
L(p)[M]=L\left(\left(1+u^{2}\right)^{2 k+1}\right)[M]=\left(L\left(1+u^{2}\right)\right)^{2 k+1}[M] .
$$

This is the coefficient of $u^{2 k}$ in the power series for $(u / \tanh (u))^{2 k+1}$. By Cauchy's integral formula this coefficient is equal to:

$$
\begin{aligned}
\frac{1}{2 \pi_{i}} \oint \frac{1}{z^{2 k+1}} \frac{z^{2 k+1} d z}{\tanh (z)^{2 k+1}}= & \frac{1}{2 \pi_{i}} \oint \frac{d z}{\tanh (z)^{2 k+1}} \stackrel{v=\tanh (z)}{=} \frac{1}{2 \pi_{i}} \oint \frac{d v}{\left(1-v^{2}\right) v^{2 k+1}}= \\
& \frac{1}{2 \pi i} \oint \frac{\left(\sum_{j=1}^{\infty} v^{2 i}\right)}{v^{2 k+1}} d v=1 .
\end{aligned}
$$

Hence $L\left[\mathbb{C P}^{2 k}\right]=\sigma\left(\mathbb{C P}^{2 k}\right)=1$ which implies that $L[M]=\sigma(M)$ for all oriented manifolds M.

Corollary 1.16. The L-genus is always an integer.
This is because the signature is always an integer.
Corollary 1.17. The L-genus is a homotopy invariant of M.
Again this is true since the signature is a homotopy invariant.

