
1. Milnor’s Exotic 7-sphere

The aim of this section is to prove:

Theorem 1.1. There is a manifold M7 homeomorphic to the 7-sphere but not diffeomorphic
to the 7-sphere.

Here is some motivation for the construction of such a manifold. Recall that we can de-
fine quaternionic projective space HPn in the usual way. In other words HPn = Hn+1/ ∼
where ∼ identifies (v0, · · · , vn) with (kv0, · · · , kvn) for all k ∈ H − 0. Hence we have homo-
geneous coordinates [v0, · · · , vn] ∈ HPn. This is a manifold with charts given by coordinates
[v0, · · · , vi−1, 1, vi+1, · · · , vn].

This also has a canonical bundle OHPn(−1) = Hn+1 − 0 given by the projection map

πO : Hn+1 − 0 −→ HPn.

Let us look at the case n = 1. Here we have that HP1 = H ∪ {∞} is diffeomorphic to S4

(Exercise - construct an explicit diffeomorphism). There are two charts H1 = H ⊂ HP1 with
homogeneous coordinates [v0, 1] and H2 = (H− 0) ∪∞ ⊂ HP1 with coordinates [1, v1]. The
chart changing map sends v0 ∈ H1− 0 to v1 = 1/v0 ∈ H1− 0. Also the bundle OHP1(−1) has
two trivializations over these charts with associated transition map

Φ12 : H1 − 0 −→ GL(4,R)+, Φ12(v0) · h = hv−10 .

Let UH = S3 be the quaternions of unit norm (i.e. UH ≡ {x + yi + zj + wk ∈ H :
x2 + y2 + z2 + w2 = 1} ). The restriction of πO to S7 is an S3-bundle over S4 = HP1.

When we looked at one dimensional bundles over RP1 or one dimensional complex bundles
over CP1 we saw that they were all obtained by taking powers of Φ12. The quaternions
though, are more complicated since they are not commutative. As a result we have many
different possibilities for the map Φ12.

For instance we can define an oriented R4 = H bundle over HP1 where the transition map
as above is

Φj,k
12 : H1 − 0 −→ GL(4,R)+, Φ12(v0) · h = vk0hv

j
0.

We will write Vk,j for this oriented R4 bundle over S4 = HP1.

Definition 1.2. Let π : V −→ B be a real vector bundle. The associated sphere bundle
SV is the set of vectors of norm 1 after choosing some metric. The associated disk bundle
DV is the set of vectors of norm ≤ 1.

This does not depend on the choice of metric. Also ∂DV = SV .

The associated sphere bundle of OHP1(−1) is S7 since we can choose the Euclidean metric
to be the standard one on the fibers viewed as subspaces of H2. Are the sphere bundles SVj,k
all different?

We now need to find out which bundles have unit sphere bundles that are homeomorphic
to the 7-sphere.

Lemma 1.3. Let M be a smooth compact manifold admitting a Morse function with only
two critical points. Then M is homeomorphic to a sphere.
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Proof. It is sufficient for us to show that M is equal to Dn t Dn/ ∼ where ∼ identifies ∂Dn

in the first factor with ∂Dn in the second factor via some diffeomorphism. This is because
M − ? where ? = 0 ∈ Dn t ∅ is diffeomorphic to Rn which implies that M is homeomorphic
to the one point compactification of Rn which is the sphere.

Fix a metric on M . Let f : M −→ R be a Morse function with two critical points one
maximum and one minimum. Then the maximum of f looks like c −

∑
i x

2
i in some chart.

Let D1 ≡ {
∑

i x
2
i ≤ 1}.

The minimum of f looks like c′ +
∑

i y
2
i in some chart. Let D2 ≡ {

∑
i y

2
i ≤ 1}.

Define g : ∂D2 −→ (0,∞) send x ∈ ∂D2 to the amount of time it takes to flow x to ∂D1

along the vector field ∇f . Let φt be the flow of ∇f . Define Φ : ∂D2×[0, 1] −→M, Φ(x, t) ≡
φg(x)t(x). ThenM is equal toD1tD2t(∂D2×[0, 1]) where ∂D2 is identified with ∂D2×{0} and
∂D2×{1} is identified with ∂D1 using the flow of∇f (i.e. the diffeomorphism x −→ φg(x)(x)).
Hence M is a union of two balls D2 ∪Φ(∂D2× [0, 1]) and D1 glued along their boundary via
a diffeomorphism. �

Lemma 1.4. If k+ j = −1 then SVk,j admits a Morse function with only two critical points.

Proof. We can define a metric ‖ · ‖ on Vk,j as follows. In the chart H1 × H we get that

‖(v0, x)‖ ≡ |x|
√

1 + |v0|2 and in the chart H1 × H we get that ‖(v1, x′)‖ ≡ |x′|
√

1 + |v1|2.
Exercise: show that this is a well defined metric (use the fact that |uvu−1| = |v| for all
u, v ∈ H2). Let SVk,j be the unit disk bundle with respect to this metric.

Our Morse function f : SVj,k −→ R is Re(x) for (v0, x) ∈ H1 × H and Re(x′v1) for
(v1, x

′) ∈ H2×H. Exercise: show that this map is well defined if k+ j = −1 (this boils down
to the fact that Re(uvu−1) = Re(v).

Exercise: it only has two critical points and is a Morse function. One way of proving this is
to first show that in the case when k = 0, j = −1 (which is the bundle OHP1(−1)), the above
function is Re(v1) for the coordinates (v0, v1) ∈ S7 = SV0,−1 ⊂ H2. This has two critical
points. The key point is that for any other k, j satisfying k + j = −1, we have exactly the
same function inside each chart and hence f also only has two critical points! �

Corollary 1.5. If k + j = 1 then SVj,k is homeomorphic to S7.

We now need to show that Vk,j is exotic for some j, k satisfying k+ j = 1. The key idea is
to show that if it was not exotic then the signature some smooth compact 8-manifold would
not be an integer by the Hirzebruch signature theorem.

Before we do this we need some preliminary Lemmas.

First of all we will compute the Pontryagin and Euler class of these bundles. Before we do
this, we need some preliminary lemmas.

Lemma 1.6. Let (Φj,k
12 )∗ : π3(H1 − 0) = π3(S

4) = Z −→ π3(GL(4,R)+) = Z ⊕ Z be the

natural map. Then the map α : Z2 −→ Z2, (j, k) −→ (Φj,k
12 )∗(1) is a group homomorphism.

Proof. First of all,

Φj,k
12 )(v0) = (Φ1,0

12 )(v0)
k · (Φ0,1

12 )(v0)
j . (1)

Therefore since H− 0 is homotopic to UH = S4 it is sufficient for us to show that if

Φ : S3 −→ π3(GL(4,R)+), Φ′ : S3 −→ π3(GL(4,R)+)

are two smooth maps and

Φ · Φ′ : S3 −→ π3(GL(4,R)+), Φ · Φ′(v0) ≡ Φ(v0) · Φ′(v0)
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is their product then

[Φ · Φ′] = [Φ] + [Φ′] ∈ π4(GL(4,R)+).

To prove (1), note that S3 is a union of two 3-balls D+, D− with boundary along the
equator. We can homotope Φ and Φ′ so that Φ|D− = id and Φ′|D+ = id. Then [Φ · Φ′] =
[Φ] + [Φ′] ∈ π4(GL(4;R)+). �

Corollary 1.7. The maps

Z⊕ Z −→ H4(S4), (j, k) −→ p1(Vj,k)

Z⊕ Z −→ H4(S4), (j, k) −→ e(Vj,k)

are group homomorphisms.

Proof. By the long exact sequence of the GL(4;R)-principal bundle we get that

π3(GL(4,R)) = π4(G̃L4(R∞). (2)

The classifying maps fj,k : S4 −→ G̃L4(R∞) represent elements Aj,k ∈ π4(G̃L4(R∞)) corre-
sponding to the elements α(j, k) from Lemma 2 under the isomorphism (2). Hence we get
our group homomorphism By Lemma 1.6. �

Lemma 1.8. The Pontryagin class of Vj,k is (k − j) ∈ Z = H4(S4;Z). The Euler class of
Vj,k is j − k ∈ Z = H4(S4;Z).

Proof. By Corollary 1.7, the group homomorphism:

β : Z⊕ Z −→ H4(S4) = Z, (j, k) −→ p1(Vj,k)

are additive. Since reversing orientation does not change the Pontryagin class, we get that β
is a linear function of k − j and hence is equal to d(k − j) for some d ∈ Z.

To calculate d we just need to compute the Pontryagin class of V0,1. Since this is a complex
bundle the Pontryagin class is minus the second Chern class which in turn is equal to minus
the Euler class. To compute the Euler class we will construct a section of V0,1 transverse to
zero then the Poincaré dual of its zero set will be the Euler class. The section is equal to 1 in
the trivialization H1×H and v1 in the trivialization H2×H. This intersects the zero section
positively once and hence the Euler class is 1. This implies that d = −1. The Euler class is
−(k − j) = j − k. �

Recall that for any compact 8-manifold B, we have

σ(B) =
1

45
(7p2[B]− p21[B]).

Therefore

p21[B] = 7p2[B]− 45σ(B)

and hence

p21[B] = −3σ(B) mod 7. (3)

Lemma 1.9. Then p1(DVj,k) = k − j ∈ Z ∼= H4(Vj,k;Z).

Proof. Since DVj,k is a disk bundle over S4, we have that H4(Vj,k;Z) ∼= Z. Now TS4 ⊕ R is
trivial which implies that p(TS4)p(R) = p(TS4 ⊕ R) = 1 which implies that p1(TS

4) = 0 ∈
H4(S

4;Z) ∼= Z. Also p1(Vj,k) = k − j. Since TDVj,k|S4 = TS4 ⊕ Vj,k and so p1(TDVj,k) =
p1(TS

4) + p1(Vj,k) = k − j ∈ Z = H4(Vj,k;Z). �
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Proof of Theorem 1.1. Choose k = 1 and j = −2. Since k + j = −1, we have that SVj,k is
homeomorphic to S7 by Corollary 1.5.

Suppose (for a contradiction) that SVj,k is diffeomorphic to S7. Let D8 be the unit ball of
dimension 8. We construct an 8 manifold E ≡ DVj,ktD8/ ∼ where ∼ identifies ∂Vj,k = SVj,k
with ∂D8 = S7 via our assumed diffeomorphism SVj,k ≤ S7.

Since H4(B;Z) = H4(DVj,k;Z) ∼= Z we have that p1(TB) = p1(TDVj,k) = k − j = −3 ∈
Z ∼= H4(B;Z) by Lemma 1.9.

Also since the normal bundle of S4 ⊂ DVj,k ⊂ B is Vj,k we get that the self intersection
of S4 is equal to the Euler number of Vj,k which is j − k = −3 by lemma 1.8. Hence p21[B] is
k − j = 3 times the self intersection number of S4 which is −(k − j)2 = −9.

The signature of B is −1 since the self intersection of S4 is j − k = −3 < 0.
We have that B cannot be a smooth manifold since σ(B) = −1 6= −9 mod 7 contradicting

Equation (3). Hence Vj,k is not diffeomorphic to S7.
�


