
1. A Review of Cohomology of Manifolds

Good texts include Spanier and Hatcher.

Definition 1.1. The standard n-simlex is the convex set ∆n ⊂ Rn+1 given by the set of
(n+ 1)-tuples (t0, · · · , tn), satisfying

∑n+1
i=1 ti = 1.

A continuous map from ∆n to a topological space X is called a singular n-simplex. The
ith face of a singular n-simplex σ : ∆n ≤ X is the n− 1-simplex

σ ◦ φi : ∆n−1 −→ X

where

φi : ∆n−1 −→ x, φi(t0, · · · , tn−1) ≡ φ(t0, · · · , ti−1, 0, ti, · · · , tn−1).

For each n ≥ 0, the singular chain group Cn(X,Λ) where Λ is a commutative ring, is
the free Λ-module generated by the set of singular n-simplices. In other words, it is the set
of formal finite linear combinations

∑
i∈S ai[σi] where |S| is finite and ai ∈ Λ for all i ∈ S

and (σi)i∈S are singular n-simplices. For n < 0, Cn(X,Λ) is defined to be 0.
The boundary homomorphism is the map

∂ : Cn(X,Λ) −→ Cn−1(X,Λ), ∂(
∑
i∈S

aiσi) =
∑
i∈S

ai

n∑
j=0

[σi ◦ φi].

Then ∂ ◦ ∂ = 0. We define Zn(X,Λ) ≡ ker(∂) and Bn(X,Λ) ≡ Im(∂) and Hn(X,Λ) ≡
Zn(X,Λ)/Bn(X,Λ) to be the nth singular homology gorup of X. Note we call this a
group, but it is really a Λ-module (it is a group in the case when Λ = Z as abelian groups
are Z-modules).

The cochain group is defined to be the dual of the singular chain group:

Cn(X,Λ) ≡ HomΛ(Cn(X,Λ),Λ).

In other words, it is the set of maps:

s : Cn(X,Λ) −→ Λ

satisfying

s(
∑
i∈S

ai[σi]) =
∑
i∈S

ais([σi])

for each finite formal sum
∑

i∈S ai[σi] as above.
The coboundary map is the Λ-linear map

δ : Cn(X; Λ) −→ Cn+1(X,Λ), δ(s)(x) ≡ (−1)n+1s(∂(x)), ∀ s ∈ Cn(X; Λ), x ∈ Cn+1(X; Λ).

Again Zn(X; Λ) ≡ ker(δ) and Bn(X; Λ) ≡ Im(δ) and Hn(X; Λ) ≡ Zn(X; Λ)/Bn(X; Λ) is the
nth cohomology group of X.

Note that we have not used the multiplicative structure of Λ (yet). Hence, one could gen-
eralize our coefficient system to include Λ-modules for instance. This is useful in obstruction
theory for instance. We will stick to having coefficients in a commutative ring Λ.

If A ⊂ X is a topological subspace, we have groups Cn(X,A; Λ) ≡ Cn(X; Λ)/Cn(A; Λ)
and hence we can define Hn(X,A; Λ) in the usual way using the induced boundary homo-
morphism ∂ (since ∂ maps the submodule Cn(A; Λ) to itself). We define Cn(X,A; Λ) ≡
ker(Cn(X; Λ) −→ Cn(A; Λ). Again δ maps the submodule Cn(X,A; Λ) to itself and hence
we can define Hn(X,A; Λ).

Relationship between homology and cohomology.
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From now on we will assume that Λ is a principal ideal domain (e.g a field or Z). To
simplyfy notation we will omit Λ, and just write Cn(X), Zn(X), Hn(X), etc instead of
Cn(X; Λ), Zn(X; Λ), etc. Also we will writeH∗(X) for the sequence of groupsH0(X), H1(X), · · · .s

Theorem 1.2. Suppose that Hn−1(X) is 0 or (more generally) a free Λ-module. Then
Hn(X) is canonically isomorphic HomΛ(Hn(X); Λ). We have a similar statement for pairs
(X,A).

E.g. the identity Hn(X) = HomΛ(Hn(X); Λ) is always true when Λ is a field.
The proof is contained in Milnor and Stasheff (Appendix A) We will just explain what the

canonical map k : Hn(X) −→ HomΛ(Hn(X); Λ) is.
Given elements x ∈ Hn(X) and ξ ∈ Hn(X) define the Kronecker index < x, ξ >∈ Λ as

follows: Choose a representative x̃ ∈ Cn(X; Λ) of x and a representative ξ̃ ∈ Cn(X; Λ) of ξ.
Then we define < x, ξ >≡ ξ(x).

Exercise: show that this does not depend on the choice of representatives x̃, ξ̃ of x and ξ
repsectively.

Hence we get a natural map:

k : Hn(X) −→ HomΛ(Hn(X); Λ), k(x)(ξ) ≡< x, ξ > .

Homology of a CW complex.
Recall that a CW complex is a topological space obtained by starting with 0 dimensional

balls, then gluing 1-balls to the 0 balls along the boundary of these 1-balls giving us a
1-skeleton, and then gluing 2-balls to the 1-skeleton along their boundary giving us the 2-
skeleton etc....

Let K be the underlying topological space of a CW complex and let Kn ⊂ K be its
n-skeleton.

Lemma 1.3. Hi(K
n,Kn−1) = 0 for all i 6= n and is a free Λ-module generated by the set of

n-cells (that are glued) when i = n

Proof. Let S ⊂ Kn be a finite set with exactly one point in the interior of each n-cell and
no other points. Since Kn−1 is a deformation retract Kn − S and hence of a neighborhood

of itself inside Kn, we get that Hi(K
n,Kn−1) = H̃i(K

n/Kn−1). We have that Kn/Kn−1 is
homeomorphic to a wedge sum of spheres giving us our result. �

Corollary 1.4. HiK
n is zero for i > n and free of rank the number of cells when i = n and

isomorphic to Hi(K) for i < n.

Proof. This is true when n = 0 since K0 is a disjoint union of points corresponding to the
number of 0-cells. Now suppose our lemma is true for the n− 1 skeleton and consider the n
skeleton. Consider long exact sequence:

Hi(K
n−1) −→ Hi(K

n) −→ Hi(K
n,Kn−1).

The condition that Hi(K
n,Kn−1) = 0 for i < n implies that Hi(K

n−1) −→ Hi(K
n) is an

isomorphism for all i < n− 1 by our induction hypothesis. If K is infinite dimensional then
one needs to use the fact that its homology is the direct limit of the homology of Kn as n
goes to infinity. �

Definition 1.5. The free module H∗(K
n,Kn−1) is called the nth chain group of the the

CW complex K. We will write CnK for this module. Similarly Cn(K) ≡ HomΛ(CnK,Λ)
is the nth cochain group of the CW complex K.
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The boundary is the natural map ∂n : Cn+1K −→ CnK coming from the long exact
sequence of the triple (Kn+1,Kn,Kn−1):

Hn+1(Kn+1,Kn) −→ Hn(Kn,Kn−1) −→ Hn(Kn+1,Kn−1) −→ Hn(Kn+1,Kn).

Similarly one can define the coboundary map.

Theorem 1.6. The (co)homology of the CW chain complex of K is canonically isomorphic
to its singular (co)homology.

The canonical homomorp-hism comes from the long exact sequence:

0 −→ Hn(Kn,Kn−2) −→ CnK −→ Cn−1K

coming from the triple (Kn,Kn−1,Kn−2) combined with the fact that Hn(Kn,Kn−2) =
Hn(Kn) from Lemma 1.4. See Milnor’s book.

cup product:
Let σ : ∆m+n −→ X be a singular simplex. The front m-face of sigma, is the singular

simplex σ ◦ αm where

αm : ∆m −→ ∆m+n, (t0, · · · , tm) −→ (t0, · · · , tm, 0, · · · , 0).

The back n-face of σ is the composition σ ◦ βn where

βn : ∆n −→ ∆n+m, (t0, · · · , tn) −→ (0, · · · , 0, t0, · · · , tn).

The cup product c ∪ c′ ∈ Cm+n(X) of c ∈ Cm(X), c′ ∈ Cn(X) is defined as:

c ∪ c′([σ]) ≡ (−1)mnc([σ ◦ αm])c′([σ ◦ βn]) ∈ Λ.

Then
δ(c ∪ c′) = (δc) ∪ c′ + (−1)mc ∪ (δc′).

Hence the cup product descends to a product

∪ : Hm(X)⊗Hn(X) −→ Hm+n(X).

This is graded commutative in the sense that [c]∪ [c′] = (−1)mn[c′]∪ [c]. Hence H∗(X) is
a graded commutative ring.

If A ⊂ X and B ⊂ X are relatively open when considered as open subsets of A∪B. Then
one has a cup product map:

Hm(X;A)⊗Hn(X;B) −→ Hm+n(X;A ∪B).

Künneth formula:

Definition 1.7. Let p1 : X × Y −→ X and p2 : X × Y −→ Y be the natural projection
maps. The cross product map (or external product) is the map:

× : Hm(X)⊗Hn(Y ) −→ Hm+n(X × Y ), x× y ≡ (p∗1x) ∪ (p∗2y).

Similarly this can be defined for pairs:

× : Hm(X,A)⊗Hn(Y,B) −→ Hm+n(X × Y, (A× Y ) ∪ (X ×B).

Theorem 1.8. Let X,Y be CW complexes such that each H i(X) is a torsion free Λ module
(e.g. when Λ is a field) and Y only has finitely many cells in each dimension. Then the cross
product map above is an isomorphism.

homology of manifolds.

Lemma 1.9. Let M be a smooth manifold. Then Hn(M ;M−x) = Λ and Hi(M ;M−x) = 0
for all i 6= n for all x ∈M .
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This is done by excision. I.e. Hn(M,M − x) = Hn(Rn,Rn − x).

Definition 1.10. An orientation on M is a choice µx ∈ Hn(M,M − x)− 0 for each x ∈M
so that µx ‘varies continuously’ with respect to x.

I.e. For each x ∈ M , there is a relatively compact neighborhood N 3 x and a class
µN ∈ Hn(M,M −N) so that the image of µN in Hn(M,M − y) is µy for each y ∈ N .

A manifold with orientation is called an orientated manifold. If a manifold admits an
orientation then we call it orientable.

The following Lemma is important.

Lemma 1.11. Let M be an oriented manifold with orientation (µx)x∈M . For each compact
K ⊂M , there is a unique µK ∈ Hn(M,M −K) which maps to µy for each y ∈ K.

The uniqueness part is not too difficult. The existence part is difficult. See Milnor Appen-
dix A Lemma A.7. The key idea is to construct µKi for compact (Ki)i∈I which are contractible
with non-empty interiors covering M and then ‘glue’ together these µKi ’s together.

Definition 1.12. If M is a compact oriented manifold with orientiation (µx)x∈M then its
fundamental class [M ] ∈ Hn(M) is the unique class whose restriction to Hn(M,M − x) is
µx for all x ∈M .

cohomology with compact support.

Definition 1.13. A cochain c has compact support in X if there is a compact set K ⊂ X so
that c([σ]) = 0 for each σ : ∆ −→M−K ⊂M . In other words, c belongs to Ci(X,X−K) ⊂
Ci(X). The cochains with compact support form a Λ submodule Ci

c(X; Λ) ⊂ Ci(X;λ).
Hence we have a cohomology group Ci

c(X; Λ) = Ci
c(X).

Note if X is compact then H i
c(X) = H i(X).

Definition 1.14. If M is an oriented n-manifold with orientation (µx)x∈M then we have an
integration map ∫

: Hn
c (M) −→ Λ, [c] −→ c(µK)

where K ⊂ M is a compact set containing the support of the cochain c representing a class
in Hn

c (M) and µK ∈ Hn(M,M −K) is the class from Lemma 1.11.
Exercise: show that this does not depend on K or the choice of representative c of the

homology class [c] ∈ Hn
c (M).

Note that in de Rham cohomology, we have Λ = R and the orientation corresponds to a
volume form, and the integration map in this definition corresponds exactly to integration
with respect ot the chose volume form.

Cap product operation:

Definition 1.15. We have the following map called the cap product:

∩ : Ci(X)⊗ Ck(X) −→ Ck−i(X), a⊗ σ −→ a ∩ σ ≡ (−1)i(k−i)(a([σ ◦ βi]))σ ◦ αk−i

where σ ◦ βi is the back i-face of σ and σ ◦ αk−i is the front k − i face of σ.

We have the following identities:

(b ∪ c) ∩ ξ = b ∩ (c ∩ ξ)
1 ∩ ξ = ξ

∂(b ∩ ξ) = (δb) ∩ ξ + (−1)dimbb ∩ (∂ξ). (1)
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Definition 1.16. By Equation 1, we get that the cap product descends to a map

∩ : H i(X)⊗Hk(X) −→ Hk−i(X)

which we call the cap product.

Theorem 1.17. Suppose thatM is oriented and compact then the mapH i(M) −→ Hn−i(M)
is an isomorphism under the map a −→ a ∩ [M ] where [M ] is Defined in Definition 1.12.

Theorem 1.18. Suppose that M is oriented and not-necessarily compact then the we have
an isomorphism D : H i

c(M) −→ Hn−i(M) is an isomorphism under the map a −→ a ∩ µK
where K contains the support of a and µK is from Lemma 1.11.

Theorem 1.18 generalizes Theorem 1.17 and one can prove 1.18 by first proving it when
K = pt and then by a patching argument (by Mayor-Vietoris).


