1. A Review of Cohomology of Manifolds

Good texts include Spanier and Hatcher.
Definition 1.1. The standard n-simlex is the convex set $\Delta^{n} \subset \mathbb{R}^{n+1}$ given by the set of $(n+1)$-tuples $\left(t_{0}, \cdots, t_{n}\right)$, satisfying $\sum_{i=1}^{n+1} t_{i}=1$.

A continuous map from Δ^{n} to a topological space X is called a singular n-simplex. The i th face of a singular n-simplex $\sigma: \Delta^{n} \leq X$ is the $n-1$-simplex

$$
\sigma \circ \phi_{i}: \Delta^{n-1} \longrightarrow X
$$

where

$$
\phi_{i}: \Delta^{n-1} \longrightarrow x, \quad \phi_{i}\left(t_{0}, \cdots, t_{n-1}\right) \equiv \phi\left(t_{0}, \cdots, t_{i-1}, 0, t_{i}, \cdots, t_{n-1}\right)
$$

For each $n \geq 0$, the singular chain group $C_{n}(X, \Lambda)$ where Λ is a commutative ring, is the free Λ-module generated by the set of singular n-simplices. In other words, it is the set of formal finite linear combinations $\sum_{i \in S} a_{i}\left[\sigma_{i}\right]$ where $|S|$ is finite and $a_{i} \in \Lambda$ for all $i \in S$ and $\left(\sigma_{i}\right)_{i \in S}$ are singular n-simplices. For $n<0, C_{n}(X, \Lambda)$ is defined to be 0 .

The boundary homomorphism is the map

$$
\partial: C_{n}(X, \Lambda) \longrightarrow C_{n-1}(X, \Lambda), \quad \partial\left(\sum_{i \in S} a_{i} \sigma_{i}\right)=\sum_{i \in S} a_{i} \sum_{j=0}^{n}\left[\sigma_{i} \circ \phi_{i}\right] .
$$

Then $\partial \circ \partial=0$. We define $Z_{n}(X, \Lambda) \equiv \operatorname{ker}(\partial)$ and $B_{n}(X, \Lambda) \equiv \operatorname{Im}(\partial)$ and $H_{n}(X, \Lambda) \equiv$ $Z_{n}(X, \Lambda) / B_{n}(X, \Lambda)$ to be the nth singular homology gorup of X. Note we call this a group, but it is really a Λ-module (it is a group in the case when $\Lambda=\mathbb{Z}$ as abelian groups are \mathbb{Z}-modules).

The cochain group is defined to be the dual of the singular chain group:

$$
C^{n}(X, \Lambda) \equiv \operatorname{Hom}_{\Lambda}\left(C_{n}(X, \Lambda), \Lambda\right)
$$

In other words, it is the set of maps:

$$
s: \mathbb{C}_{n}(X, \Lambda) \longrightarrow \Lambda
$$

satisfying

$$
s\left(\sum_{i \in S} a_{i}\left[\sigma_{i}\right]\right)=\sum_{i \in S} a_{i} s\left(\left[\sigma_{i}\right]\right)
$$

for each finite formal sum $\sum_{i \in S} a_{i}\left[\sigma_{i}\right]$ as above.
The coboundary map is the Λ-linear map
$\delta: C^{n}(X ; \Lambda) \longrightarrow C^{n+1}(X, \Lambda), \quad \delta(s)(x) \equiv(-1)^{n+1} s(\partial(x)), \quad \forall s \in C^{n}(X ; \Lambda), x \in C_{n+1}(X ; \Lambda)$.
Again $Z^{n}(X ; \Lambda) \equiv \operatorname{ker}(\delta)$ and $B^{n}(X ; \Lambda) \equiv \operatorname{Im}(\delta)$ and $H^{n}(X ; \Lambda) \equiv Z^{n}(X ; \Lambda) / B^{n}(X ; \Lambda)$ is the nth cohomology group of X.

Note that we have not used the multiplicative structure of Λ (yet). Hence, one could generalize our coefficient system to include Λ-modules for instance. This is useful in obstruction theory for instance. We will stick to having coefficients in a commutative ring Λ.

If $A \subset X$ is a topological subspace, we have groups $C_{n}(X, A ; \Lambda) \equiv C_{n}(X ; \Lambda) / C_{n}(A ; \Lambda)$ and hence we can define $H_{n}(X, A ; \Lambda)$ in the usual way using the induced boundary homomorphism ∂ (since ∂ maps the submodule $C_{n}(A ; \Lambda)$ to itself). We define $C^{n}(X, A ; \Lambda) \equiv$ $\operatorname{ker}\left(C^{n}(X ; \Lambda) \longrightarrow C^{n}(A ; \Lambda)\right.$. Again δ maps the submodule $C^{n}(X, A ; \Lambda)$ to itself and hence we can define $H^{n}(X, A ; \Lambda)$.

Relationship between homology and cohomology.

From now on we will assume that Λ is a principal ideal domain (e.g a field or \mathbb{Z}). To simplyfy notation we will omit Λ, and just write $C_{n}(X), Z_{n}(X), H_{n}(X)$, etc instead of $C_{n}(X ; \Lambda), Z_{n}(X ; \Lambda)$, etc. Also we will write $H_{*}(X)$ for the sequence of groups $H_{0}(X), H_{1}(X), \cdots$.s

Theorem 1.2. Suppose that $H_{n-1}(X)$ is 0 or (more generally) a free Λ-module. Then $H^{n}(X)$ is canonically isomorphic $\operatorname{Hom}_{\Lambda}\left(H_{n}(X) ; \Lambda\right)$. We have a similar statement for pairs (X, A).
E.g. the identity $H^{n}(X)=\operatorname{Hom}_{\Lambda}\left(H_{n}(X) ; \Lambda\right)$ is always true when Λ is a field.

The proof is contained in Milnor and Stasheff (Appendix A) We will just explain what the canonical map $k: H^{n}(X) \longrightarrow \operatorname{Hom}_{\Lambda}\left(H_{n}(X) ; \Lambda\right)$ is.

Given elements $x \in H^{n}(X)$ and $\xi \in H_{n}(X)$ define the Kronecker index $<x, \xi>\in \Lambda$ as follows: Choose a representative $\widetilde{x} \in C^{n}(X ; \Lambda)$ of x and a representative $\widetilde{\xi} \in C_{n}(X ; \Lambda)$ of ξ. Then we define $\langle x, \xi\rangle \equiv \xi(x)$.

Exercise: show that this does not depend on the choice of representatives $\widetilde{x}, \widetilde{\xi}$ of x and ξ repsectively.

Hence we get a natural map:

$$
k: H^{n}(X) \longrightarrow \operatorname{Hom}_{\Lambda}\left(H_{n}(X) ; \Lambda\right), \quad k(x)(\xi) \equiv<x, \xi>
$$

Homology of a CW complex.

Recall that a CW complex is a topological space obtained by starting with 0 dimensional balls, then gluing 1-balls to the 0 balls along the boundary of these 1 -balls giving us a 1 -skeleton, and then gluing 2 -balls to the 1 -skeleton along their boundary giving us the 2 skeleton etc....

Let K be the underlying topological space of a CW complex and let $K^{n} \subset K$ be its n-skeleton.

Lemma 1.3. $H_{i}\left(K^{n}, K^{n-1}\right)=0$ for all $i \neq n$ and is a free Λ-module generated by the set of n-cells (that are glued) when $i=n$

Proof. Let $S \subset K^{n}$ be a finite set with exactly one point in the interior of each n-cell and no other points. Since K^{n-1} is a deformation retract $K^{n}-S$ and hence of a neighborhood of itself inside K^{n}, we get that $H_{i}\left(K^{n}, K^{n-1}\right)=\widetilde{H}_{i}\left(K^{n} / K^{n-1}\right)$. We have that K^{n} / K^{n-1} is homeomorphic to a wedge sum of spheres giving us our result.

Corollary 1.4. $H_{i} K^{n}$ is zero for $i>n$ and free of rank the number of cells when $i=n$ and isomorphic to $H_{i}(K)$ for $i<n$.

Proof. This is true when $n=0$ since K^{0} is a disjoint union of points corresponding to the number of 0 -cells. Now suppose our lemma is true for the $n-1$ skeleton and consider the n skeleton. Consider long exact sequence:

$$
H_{i}\left(K^{n-1}\right) \longrightarrow H_{i}\left(K^{n}\right) \longrightarrow H_{i}\left(K^{n}, K^{n-1}\right)
$$

The condition that $H_{i}\left(K^{n}, K^{n-1}\right)=0$ for $i<n$ implies that $H_{i}\left(K^{n-1}\right) \longrightarrow H_{i}\left(K^{n}\right)$ is an isomorphism for all $i<n-1$ by our induction hypothesis. If K is infinite dimensional then one needs to use the fact that its homology is the direct limit of the homology of K^{n} as n goes to infinity.
Definition 1.5. The free module $H_{*}\left(K^{n}, K^{n-1}\right)$ is called the nth chain group of the the CW complex K. We will write $\mathcal{C}_{n} K$ for this module. Similarly $\mathcal{C}^{n}(K) \equiv \operatorname{Hom}_{\Lambda}\left(\mathfrak{C}_{n} K, \Lambda\right)$ is the nth cochain group of the $\mathbf{C W}$ complex K.

The boundary is the natural map $\partial_{n}: \mathfrak{C}_{n+1} K \longrightarrow \mathcal{C}_{n} K$ coming from the long exact sequence of the triple $\left(K^{n+1}, K^{n}, K^{n-1}\right)$:

$$
H_{n+1}\left(K^{n+1}, K^{n}\right) \longrightarrow H_{n}\left(K^{n}, K^{n-1}\right) \longrightarrow H_{n}\left(K^{n+1}, K^{n-1}\right) \longrightarrow H_{n}\left(K^{n+1}, K^{n}\right)
$$

Similarly one can define the coboundary map.
Theorem 1.6. The (co)homology of the CW chain complex of K is canonically isomorphic to its singular (co)homology.

The canonical homomorp-hism comes from the long exact sequence:

$$
0 \longrightarrow H_{n}\left(K^{n}, K^{n-2}\right) \longrightarrow \mathfrak{C}_{n} K \longrightarrow \mathfrak{C}_{n-1} K
$$

coming from the triple $\left(K^{n}, K^{n-1}, K^{n-2}\right)$ combined with the fact that $H_{n}\left(K^{n}, K^{n-2}\right)=$ $H_{n}\left(K^{n}\right)$ from Lemma 1.4. See Milnor's book.
cup product:
Let $\sigma: \Delta^{m+n} \longrightarrow X$ be a singular simplex. The front m-face of sigma, is the singular simplex $\sigma \circ \alpha_{m}$ where

$$
\alpha_{m}: \Delta^{m} \longrightarrow \Delta^{m+n}, \quad\left(t_{0}, \cdots, t_{m}\right) \longrightarrow\left(t_{0}, \cdots, t_{m}, 0, \cdots, 0\right) .
$$

The back n-face of σ is the composition $\sigma \circ \beta_{n}$ where

$$
\beta_{n}: \Delta^{n} \longrightarrow \Delta^{n+m}, \quad\left(t_{0}, \cdots, t_{n}\right) \longrightarrow\left(0, \cdots, 0, t_{0}, \cdots, t_{n}\right) .
$$

The cup product $c \cup c^{\prime} \in C^{m+n}(X)$ of $c \in C^{m}(X), c^{\prime} \in C^{n}(X)$ is defined as:

$$
c \cup c^{\prime}([\sigma]) \equiv(-1)^{m n} c\left(\left[\sigma \circ \alpha_{m}\right]\right) c^{\prime}\left(\left[\sigma \circ \beta_{n}\right]\right) \in \Lambda .
$$

Then

$$
\delta\left(c \cup c^{\prime}\right)=(\delta c) \cup c^{\prime}+(-1)^{m} c \cup\left(\delta c^{\prime}\right) .
$$

Hence the cup product descends to a product

$$
\cup: H^{m}(X) \otimes H^{n}(X) \longrightarrow H^{m+n}(X)
$$

This is graded commutative in the sense that $[c] \cup\left[c^{\prime}\right]=(-1)^{m n}\left[c^{\prime}\right] \cup[c]$. Hence $H^{*}(X)$ is a graded commutative ring.

If $A \subset X$ and $B \subset X$ are relatively open when considered as open subsets of $A \cup B$. Then one has a cup product map:

$$
H^{m}(X ; A) \otimes H^{n}(X ; B) \longrightarrow H^{m+n}(X ; A \cup B)
$$

Künneth formula:

Definition 1.7. Let $p_{1}: X \times Y \longrightarrow X$ and $p_{2}: X \times Y \longrightarrow Y$ be the natural projection maps. The cross product map (or external product) is the map:

$$
\times: H^{m}(X) \otimes H^{n}(Y) \longrightarrow H^{m+n}(X \times Y), \quad x \times y \equiv\left(p_{1}^{*} x\right) \cup\left(p_{2}^{*} y\right)
$$

Similarly this can be defined for pairs:

$$
\times: H^{m}(X, A) \otimes H^{n}(Y, B) \longrightarrow H^{m+n}(X \times Y,(A \times Y) \cup(X \times B)
$$

Theorem 1.8. Let X, Y be CW complexes such that each $H^{i}(X)$ is a torsion free Λ module (e.g. when Λ is a field) and Y only has finitely many cells in each dimension. Then the cross product map above is an isomorphism.

homology of manifolds.

Lemma 1.9. Let M be a smooth manifold. Then $H_{n}(M ; M-x)=\Lambda$ and $H_{i}(M ; M-x)=0$ for all $i \neq n$ for all $x \in M$.

This is done by excision. I.e. $H_{n}(M, M-x)=H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right)$.
Definition 1.10. An orientation on M is a choice $\mu_{x} \in H_{n}(M, M-x)-0$ for each $x \in M$ so that μ_{x} 'varies continuously' with respect to x.
I.e. For each $x \in M$, there is a relatively compact neighborhood $N \ni x$ and a class $\mu_{N} \in H_{n}(M, M-N)$ so that the image of μ_{N} in $H_{n}(M, M-y)$ is μ_{y} for each $y \in N$.

A manifold with orientation is called an orientated manifold. If a manifold admits an orientation then we call it orientable.

The following Lemma is important.
Lemma 1.11. Let M be an oriented manifold with orientation $\left(\mu_{x}\right)_{x \in M}$. For each compact $K \subset M$, there is a unique $\mu_{K} \in H^{n}(M, M-K)$ which maps to μ_{y} for each $y \in K$.

The uniqueness part is not too difficult. The existence part is difficult. See Milnor Appendix A Lemma A.7. The key idea is to construct $\mu_{K_{i}}$ for compact $\left(K_{i}\right)_{i \in I}$ which are contractible with non-empty interiors covering M and then 'glue' together these $\mu_{K_{i}}$'s together.
Definition 1.12. If M is a compact oriented manifold with orientiation $\left(\mu_{x}\right)_{x \in M}$ then its fundamental class $[M] \in H_{n}(M)$ is the unique class whose restriction to $H_{n}(M, M-x)$ is μ_{x} for all $x \in M$.
cohomology with compact support.
Definition 1.13. A cochain c has compact support in X if there is a compact set $K \subset X$ so that $c([\sigma])=0$ for each $\sigma: \Delta \longrightarrow M-K \subset M$. In other words, c belongs to $C^{i}(X, X-K) \subset$ $C^{i}(X)$. The cochains with compact support form a Λ submodule $C_{c}^{i}(X ; \Lambda) \subset C^{i}(X ; \lambda)$. Hence we have a cohomology group $C_{c}^{i}(X ; \Lambda)=C_{c}^{i}(X)$.

Note if X is compact then $H_{c}^{i}(X)=H^{i}(X)$.
Definition 1.14. If M is an oriented n-manifold with orientation $\left(\mu_{x}\right)_{x \in M}$ then we have an integration map

$$
\int: H_{c}^{n}(M) \longrightarrow \Lambda, \quad[c] \longrightarrow c\left(\mu_{K}\right)
$$

where $K \subset M$ is a compact set containing the support of the cochain c representing a class in $H_{c}^{n}(M)$ and $\mu_{K} \in H_{n}(M, M-K)$ is the class from Lemma 1.11.

Exercise: show that this does not depend on K or the choice of representative c of the homology class $[c] \in H_{c}^{n}(M)$.

Note that in de Rham cohomology, we have $\Lambda=\mathbb{R}$ and the orientation corresponds to a volume form, and the integration map in this definition corresponds exactly to integration with respect ot the chose volume form.

Cap product operation:
Definition 1.15. We have the following map called the cap product:

$$
\cap: C^{i}(X) \otimes C_{k}(X) \longrightarrow C_{k-i}(X), \quad a \otimes \sigma \longrightarrow a \cap \sigma \equiv(-1)^{i(k-i)}\left(a\left(\left[\sigma \circ \beta_{i}\right]\right)\right) \sigma \circ \alpha_{k-i}
$$

where $\sigma \circ \beta_{i}$ is the back i-face of σ and $\sigma \circ \alpha_{k-i}$ is the front $k-i$ face of σ.
We have the following identities:

$$
\begin{gather*}
(b \cup c) \cap \xi=b \cap(c \cap \xi) \\
1 \cap \xi=\xi \\
\partial(b \cap \xi)=(\delta b) \cap \xi+(-1)^{\operatorname{dimb} b} b \cap(\partial \xi) . \tag{1}
\end{gather*}
$$

Definition 1.16. By Equation 1, we get that the cap product descends to a map

$$
\cap: H^{i}(X) \otimes H_{k}(X) \longrightarrow H_{k-i}(X)
$$

which we call the cap product.
Theorem 1.17. Suppose that M is oriented and compact then the map $H^{i}(M) \longrightarrow H_{n-i}(M)$ is an isomorphism under the map $a \longrightarrow a \cap[M]$ where $[M]$ is Defined in Definition 1.12.
Theorem 1.18. Suppose that M is oriented and not-necessarily compact then the we have an isomorphism $D: H_{c}^{i}(M) \longrightarrow H_{n-i}(M)$ is an isomorphism under the map $a \longrightarrow a \cap \mu_{K}$ where K contains the support of a and μ_{K} is from Lemma 1.11.

Theorem 1.18 generalizes Theorem 1.17 and one can prove 1.18 by first proving it when $K=p t$ and then by a patching argument (by Mayor-Vietoris).

