
1. Stiefel Whitney Classes

Throughout this section, all cohomology groups have coefficients in Z/2Z. I will just write
Z/2 ≡ Z/2Z. The following theorem will be proven later:

Theorem 1.1. To each topological vector bundle π : E −→ B of rank k, there is a sequence
of cohomology classes

wi(E) ∈ H i(B;Z/2), i = 0, 1, 2, · · ·
where wi(E) is called the ith Stiefel-Whitney class so that:

(Stiefel-1) rank axiom w0(E) = 1 and wi(E) = 0 for i > k.
(Stiefel-2) Naturality: For any continuous map f : B′ −→ B, we have that wi(f

∗E) =
f∗(wi(E)). Also isomorphic vector bundles have the same Stiefel-Whitney classes.

(Stiefel-3) The Whitney Product Theorem: Let π : E −→ B, π′ : E′ −→ B be fiber bundles
over the same base B. Then

wk(E ⊕ E′) =

k∑
i=0

wi(E) ∪ wk−i(E′).

(Stiefel-4) normalization axiom: w1(ORP1(−1)) 6= 0 where ORP1(−1) is the natural vector
bundle on RP1 introduced earlier.

For the moment we will assume that such classes wi exist for each vector bundle. A proof
of existence will appear later in the course.

For smooth manifolds this was defined by Stiefel in 1935 and then for general topological
spaces by Whitney.

From the naturality axiom we have the following propositions.

Proposition 1.2. If E1 is isomorphic to E2 then wi(E1) = wi(E2).

Proposition 1.3. If π : E −→ B is trivial then wi(E) = 0 for all i > 0.

Proof. Here E is isomorphic to f∗Rk where Rk −→ pt is the trivial vector bundle over a
point. Since H i(pt) = 0 for all i > 0 implies that wi(Rk) = 0 for all i > 0 and so wi(E) = 0
for all i > 0. �

The following proposition follows from Proposition 1.3 and the Whitney product formula:

Proposition 1.4. If π : E −→ B is any vector bundle and π′ : E′ −→ B is trivial then
wi(E) = wi(E ⊕ E′) for all i ≥ 0.

Proposition 1.5. Suppose that a rank k vector bundle π : E −→ B admits a continuous
section (i.e. a continuous map s −→ B −→ E satisfying π ◦ s = idB). Then wk(E) = 0.

More generally, if we have m sections s1, · · · , sm so that s1(x), · · · , sm(x) are linearly
independent for all x ∈ B then

wk(E) = wk−1(E) = · · · = w(k −m) = 0.

Proof. Choose a metric on E. Let V be the vector subbundle whose fiber at x ∈ B is
span(s1(x), · · · , sm(x)) and let V ⊥ be the vector subbundle whose fiber at x ∈ E consists of
the set of vectors in Ex which are orthogonal to V . Then E = V ⊕ V ⊥. Hence we have an
isomorphism:

Φ : V ⊕ Rm −→ V ⊕ V ⊥ = E, Φ(v, (a1, · · · , am))|Ex = v +

m∑
i=1

aisi(x) ∀ x ∈ B.
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The result now follows from proposition 1.4 combined with rank axiom. �
If E⊕E′ is trivial then the Whitney product formula combined with Proposition 1.3 gives

the following relations:

w1(E) + w1(E′) = 0

w2(E) + w1(E) ∪ w1(E′) + w2(E′) = 0

w3(E) + w2(E) ∪ w1(E′) + w1(E) ∪ w2(E′) + w3(E′) = 0

etc..
As a result wi(E

′) is a polynomial expression in the Stiefel-Whitney classes of E.
Define HΠ(B;Z/2) to be the ring of formal infinite series:

a0 + a1 + a2 + a3 + · · · , ai ∈ H i(B;Z/2) ∀i ∈ Z>0

with product

(a0 +a1 + · · · ) · (b0 + b1 + · · · ) = a0∪ b0 + (a0∪ b1 +a1∪ b0) +(a0∪ b2 +a1∪ b1 +a2∪ b0) + · · · .

The product is commutative since we are working mod 2 and is also associative. Note
HΠ(V ;Z/2) =

∏
i∈NH

i(V ;Z/2). If V is a finite dimensional CW complex such a smooth

manifold then HΠ(V ;Z/2) = H∗(V ;Z/2).

Definition 1.6. The total Stiefel Whitney class of a vector bundle of π : V → B is given
by

w(V ) ≡ 1 + w1(V ) + w2(V ) + · · · .

Note that the Whitney product theorem now says:

w(V ⊕W ) = w(V )w(W ).

Lemma 1.7. The subset

R ≡
{

1 + a1 + · · · ∈ HΠ(V ;Z/2)
}
⊂ HΠ(V ;Z/2)

is a commutative subgroup under multiplication. In fact it is the group of units ofHΠ(V ;Z/2).

Proof. This follows from the (Taylor) formula:

(1 + (a1 + a2 + · · · ))−1 = 1− (a1 + a2 + · · · ) + (a1 + a2 + · · · )2 − · · ·

= 1− a1 + (a2
1 − a2) + (−a3

1 + a1a2 + a2a1 − a3) · · · .
Exercise: prove this properly. �
This means that we can solve the equation w(V ⊕W ) = w(V )w(W ) giving us w(V ) =

w(V )−1w(W ).

Theorem 1.8. (Whitney Duality Theorem) Let B ⊂ M be a submanifold of a
manifold M . Then w(NM (B)) = w(TB)−1w(TM |B).

Proof. This follows from the above discussion combined with the fact that NM (B) ⊕ TB =
TM |B. �

Example 1.9. Since NRnSn−1 is trivial (as it has a section given by radial the vector field
pointing outwards), we have that w(TSn−1) = w(Rn|Sn−1) = 0.
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Lemma 1.10. (Homework)

H i(RPn;Z/2) =

{
Z/2 if 0 ≤ i ≤ n
0 otherwise

Also if a ∈ H i(RPn;Z/2) − {0} and b ∈ Hj(RPn;Z/2) − {0} and i + j ≤ n then a ∪ b ∈
H i+j(RPn;Z/2)− {0}.

In other words: H∗(RPn;Z/2) is isomorphic to the algebra Z/2[a]/an+1 where a has degree
1.

Combining the above lemma with (Stiefel-4) and (Stiefel-1):

Corollary 1.11. w(ORP1(−1)) = 1 + a where a ∈ H1(RPn) − {0} is the unique non-zero
element.

Definition 1.12. To make things easier we will define γ1
n ≡ γ1

n.

Example 1.13. Since γ1
n is a subbundle of the trivial bundle ν ≡ RPn × Rn+1, we have

w(ν/γ1
n) = (1 + a)−1

= 1− a+ a2 − a3 + · · ·+ (−1)nann = 1 + a+ · · ·+ an.

This is an example of a rank n vector bundle with the property that all that Stiefel-Whitney
classes which can be non-zero are in fact non-zero.

Lemma 1.14. There is a canonical isomorphism:

TRPn ∼= Hom
(
γ1
n, ν/γ

1
n

)
.

Proof. Since
TSn = {(x, v) ∈ Sn × Rn+1 : x · v = 0}

and since the map x→ ±x gives us our double cover Sn → RPn, we have that

TRPn = Sn × Rn+1/± 1.

In other words, it is the set of pairs {(x, v), (−x,−v)} where x ∈ Sn and v ∈ Rn+1. Such a
pair gives us a unique linear map

Lx : γ1
n|x → (γ1

n)⊥|x
sending x to v. Conversely any such linear map determines a pair {(x, v), (−x,−v)} as
above. �

Theorem 1.15.
TRPn ⊕ (RPn × R) ∼= ⊕n+1

i=1 γ
1
n.

Hence:

w(TRPn) = (1 + a)n+1 = 1 +

(
n+ 1

1

)
a+

(
n+ 1

2

)
a2 + · · ·

Proof. We have that Hom(γ1
n, γ

1
n) is trivial as it has a nonwhere zero section given by the

identity map. Hence:

TRPn ⊕ (RPn × R) ∼= TRPn ⊕Hom(γ1
n, γ

1
n)

∼= Hom(γ1
n, (ν/γ

1
n)⊕ γ1

n) ∼= Hom(γ1
n,RPn × Rn)

∼= ⊕n+1
i=1 γ

1
n.

�

Corollary 1.16. (Stiefel) The class w(RPn) equals 1 if and only if n is a power of 2.
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Proof. if: This is easy by inductively using the relation (a+ b) = a2 + 2ab+ b2.
only if: Suppose n+ 1 = 2rm where m > 1 is odd. Then

w(RPn) = (1 + a2r)m) = 1 +ma2r +m(m− 1)2a2.2r + · · · 6= 1.

�
Division Algebras.

Definition 1.17. A manifold M is parallelizable if its tangent space is a trivial vector
bundle.

Example 1.18. S1 is parallelizable since ∂
∂θ is a non-trivial section.

Theorem 1.19. Suppose that there is a bilnear product operation

p : Rn ⊗ Rn → Rn

without zero divisors (I.e. p(x⊗ y) 6= 0 for all x, y ∈ Rn − 0). Then w(RPn−1) = 1. Hence n
cannot be a power of 2.

This product does not need to be associative or have an identity element. In fact such
division algebras only exist when n = 1, 2, 4, 8 (Bott Milnor Kevaire 1958).

Proof. Let e1, · · · , en be basis vectors for Rn. For each x ∈ Rn define the right multiplication
map

Rx : Rn → Rn, Rx(y) ≡ p(y, x).

This map is invertible if x 6= 0.
For each x ∈ Rn − {0},

x = R1(R1
1(x)), R2(R1

1(x)), · · · , Rk(R1
1(x))

form a basis for Rn with the first vector equal to x (this is because multiplication on the left
is also an isomorphism). Hence we have n− 1 linearly indpendent sections

RPn−1 → Hom(γ1
n−1, (RPn × Rn)/γ1

n−1), [±x]→ (y → [Ri(R
−1
1 (y))]), ∀ y ∈ Rx

∀ [±x] ∈ RPn, i ∈ {1, · · · , n− 1}.
�

Note that if a manifold M of dimension n can be immersed in to Rn+k then its dual class
w(TM) := w(TM)−1 satisfies

wi(TM) = 0, ∀i > k

since

(1) dim(NRn+kM) = k,
(2) w(TM) = w(NRn+k(M))
(3) and w(TRn+k) = 0.

Example 1.20. We have w(RP9) = (1 + a)10 = 1 + a2 + a8 (since 10 = 5 × 2). Hence
w(RP9) = 1 + a2 + a4 + a6. This means

Theorem 1.21. RP2r cannot be immersed in to Rn+k for k < 2r − 1.
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Proof.
w(TRP2r) = (1 + a)2r+1 = (1 + a)(1 + 2r) = 1 + a+ a2r .

Therefore:
w(TRP2r) = 1 + a+ a2 + · · ·+ a2r−1.

�
Whitney proved that every smooth compact manifold of dimension n can be immersed in

R2n−1 and hence the above theorem gives us the best possible estimate. Note that the above
theorem tells us that RP8 cannot be immersed in R14 and hence RP9 cannot be immersed in
R14 (as proven above) since RP8 is a submanifold of RP9.

Stiefel-Whitney Numbers.

Recall, every manifold has a fundamental class [M ] ∈ Hn(M ;Z/2) with Z/2 coefficients.
Also recall for any ν ∈ H∗(M ;Z/2) we have the evaluation ν([M ]) ∈ Z/2 called the Kro-
necker index (this is defined to be zero if ∗ 6= n).

Definition 1.22. For any tuple (r1, · · · , rn) ∈ Nn≥0, the number

(∪ni=1w
ri
i )[M ] ∈ Λ

is called a Stiefel-Whitney number. We will write

wr11 · · ·w
rn
n [M ]

for such a number.
Two manifolds M , M ′ have the same Stiefel-Whitney numbers if

wr11 · · ·w
rn
n [M ] = wr11 · · ·w

rn
n [M ′]

for all tuples (r1, · · · , rn) ∈ Nn≥0.

Note that for such a number to be non-zero, we need
∑

i iri = n.

Let us compute some Stiefel-Whitney numbers of RPn. We have two cases: (1) n is even,
(2) n is odd.

(1) If n is even then wn(TRPn) = (n + 1)an = an and hence wn[RPn] = 1. Also
w1(TRPn) = a and so wn1 [RPn] = 1. If n is a power of 2 then w(TRPn) = 1 + a+ an

which means that all other Stiefel-Whitney numbers are 0.
(2) If n = 2k − 1 is odd then w(TRP2k−1) = (1 + a)2k = (1 + a2)k. Hence all odd

Stiefel-Whitney classes vanish. This means that we can only consider cup products
of even Stiefel-Whitney classes. But their degrees will never add up to n (which is
odd). Hence all Stiefel-Whitney classes vanish.

Theorem 1.23. If B is the boundary of a smooth compact manfiold then all the Stiefel-
Whitney numbers of B vanish.

Proof. Let B = ∂W for some compact W . Then the fundamental class [W ] ∈ Hn+1(W ;B)
gets sent to [B] ∈ Hn(B) under the map

∂ : Hn+1(W ;B)→ Hn(B).

Also
ν[B] = ν[∂B] = (δν)[B] (1)

for all ν ∈ Hn(B) where δ : Hn(B)→ Hn+1(W ;B) is the natural map coming from the long
exact sequence of the pair (W,B).
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Let i : B ↪→W be the inclusion map. Since B = ∂W , we have that TW |B = TB⊕ (B×R)
and so i∗wi(TW ) = wi(TB) for all i. The long exact sequence:

Hn(W )
i→ Hn(B)

δ→ Hn+1(W,B)

tells us that
δwi(TB) = δ(i∗wi(TW )) = 0. (2)

Hence

wr11 · · ·w
rm
n ([B])

(1)
= δ (wr11 ∪ · · · ∪ w

rm
n ) ([W ])

(2)
= 0.

�

Theorem 1.24. (Thom) If all the Stiefel-Whitney numbers vanish for a compact manifold
B then B is the boundary of a manifold W .

Definition 1.25. Two manifolds M1, M2 are cobordant if there is a manifold W so that
∂W = M1 tM2.

M1

M2

Corollary 1.26. Cobordant manifolds have the same Stiefel-Whitney numbers.


