
1. Grassmann Bundles.

Note if you have a smooth embedded curve

γ : I → Rk+1, I ⊂ R
then we have a Gauss map I → Sk sending x to d

dtγ/|
d
dtγ|. The image of this map only

depends on I up to oriented reparameterization. If we wish to forget the orientation of the
curve γ, then we have a Gauss map I → RPn sending x to ± d

dtγ/|
d
dtγ|. This Guass map (up

to reparameterization) only depends on the submanifold γ(I) ⊂ Rk+1 We wish to generalize
this Gauss map from curves to general submanifolds of Euclidean space. In other words, if
Mn ⊂ Rn+k then its tangent space TMn ⊂ TxRn+k = Rn+k is an n-dimensional subspace
and hence we need a space which parameterizes all n dimensional subspaces of Rn+k.

Definition 1.1. The Grassmann manifold Gn(Rn+k) is the set of all n-dimensional sub-
spaces of Rn+k. This is given the following topology:

An n-frame is a collection of n linearly independent vectors in Rn+k. The set of n-frames
forms an open subset

Vn(Rn+k) ⊂ (Rn+k)n

called the Stiefel-manifold. We have a canonical surjective function

q : Vn(Rn+k) � Gn(Rn+k)

sending an n-frame to the space it spans. The topology of Gn(Rn+k) is then the quotient
topology (i.e. U ⊂ Gn(Rn+k) is open if and only if q−1(U) is open).

Note that if n = 1 then G1(R1+k) = RPk.

Lemma 1.2. Gn(Rn+k) has the structure of a smooth manifold.

Proof. First of all, define V o
n (Rn+k) ⊂ Vn(Rn+k) to be the set of orthonormal n-frames and

define
qo : V o

n (Rn+k) � Gn(Rn+k), qo = q|V o
n (Rn+k).

Then the topology on Gn(Rn+k) is the quotient topology of V o
n (Rn+k) induced by qo. Since

the fibers of qo are compact, and since V o
n (Rn+k) is a metric space, we get that Gn(Rn+k) is

Hausdorff (in fact this implies it is a metric space). It is also paracompact since V o
n (Rn+k) is

paracompact.
We now need to construct charts around each point V of Gn(Rn+k). Here V ⊂ Rn+k.

Let V ⊥ be the set of vectors orthogonal to V . Hence we have an orthogonal projection
P : Rn+k = V⊕V ⊥ � V sending v⊕v⊥ to v. Let UV ⊂ Gn(Rn+k) be the set of V ′ ∈ Gn(Rn+k)
so that P |V ′ is an isomorphism. Then UV is the set of graphs of linear maps V → V ⊥. Hence
we have a natural isomorphism ΦV : UV

∼= Hom(V, V ⊥). Choose a basis for V and V ⊥. Since
dim(V ) = n and dim(V ⊥) = k , we can choose an isomorphism ΨV : Hom(V, V ⊥) ∼= Rnk

sending a map to its corresponding n × k matrix with respect to the above basis. Hence
ΨV ◦ ΦV : UV → Rnk is our chart.

The transition maps are smooth for the following reason. The map ΨV ′ ◦ΦV ′ ◦(ΨV ◦ΦV )−1

sends an n× k matrix to its graph Γ in Rn+k and then applies a fixed linear transformation
T to this graph and then gives us the corresponding matrix of T (Γ). Exercise: Such a map
is smooth when defined. �

Definition 1.3. The universal bundle over Gn(Rn+k) is the subset

γnk ≡ γn(Rn+k) ≡ {(V, x) ∈ Gn(Rn+k)× Rn+k : x ∈ V } ⊂ Gn(Rn+k)× Rn+k.
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We also have a natural map: π : γn(Rn+k) � Gn(Rn+k) sending (V, x) to V .

Lemma 1.4. The map π above makes γnk = γn(Rn+k) into a smooth vector bundle of rank
k.

Proof. We just need to construct trivializations of π over each chart ΨV ◦ ΦV : UV → Rnk

from the previous proof. Here ΨV involved choosing a basis for V and V ⊥. Hence we have
a natural isomorphism φ : V → Rn. The trivialization τ sends (B, x) ∈ UV × Rn+k where
x ∈ B to (ΨV (Φ(B)), φ(P (x)) ∈ Rnk × Rk.

Exercise: show that the transition maps are smooth bundle isomorphisms. �

Lemma 1.5. For any rank n vector bundle π : E → B over a compact normal base, there is
a (large) k ∈ N, a map f : B → Gn(Rn+k) so that E is isomorphic to f∗(γnk ).

In other words, every rank n vector bundle is isomorphic to the pullback of the universal
vector bundle with respect to some map. If the vector bundle is smooth then this can be
done smoothly.

Proof. It is sufficient to construct a continuous map f : E → Rk so that the restriction of f
to each fiber π−1(b) is a linear map from π−1(b) to Rk. This then gives us a map F : E → γnk
sending x ∈ E to (π(π−1(x)), f(x)) ∈ γnk which is a fiberwise isomorphism which would prove
the lemma.

We construct f chart by chart. Choose finite open covers (Ui)i∈S , (Vi)i∈S and (Wi)i∈S so
that W i ⊂ Vi and V i ⊂ Ui and so that E|Ui is trivial for each i ∈ S. Choose continuous
functions λi : Ui → R equal to 0 outside Vi and equal to 1 along Wi (this can be done using
the normal property). We have trivializations τi : E|Ui → Ui → Rn. Hence we have fiberwise
linear maps hi ≡ pr2 ◦ τi : EUi → Rn where pr2 : Ui × Rn → Rn is the natural projection
map.

Define:

hi : E → Rn, hi(x) ≡
{

0 if π(x) /∈ Ui

λi(π(x)).hi(x) if π(x) ∈ Ui

Then the map

f : E → ⊕i∈SRn ∼= Rn|S|, f((xi)i∈S) = ⊕i∈Shi(xi)

is a map whose restriction to each fiber is a linear embedding.
Note that if π : E → B is a smooth vector bundle then all of the above maps can be chosen

to be smooth. �

Definition 1.6. The inclusion map Rk′ ⊂ Rk, x → (x, 0) for k′ ≤ k gives us a natural

inclusion map Gn(Rn+k′) ↪→ Gn(Rn+k) and also an inclusion homomorphism of bundles
γnk′ ↪→ γnk . Here γnk′ is canonically isomorphic to the pullback of γnk .

We define Gn(R∞) to be the direct limit limk→∞(Gn(Rn+k)) with the direct limit topology.
In other words U ⊂ Gn(R∞) is open if and only if its restriction to Gn(Rn+k) is open for all
k ∈ N.

Similarly we can define γn∞ to be the direct limit of γnk with the direct limit topology.

Note that we can describe Gn(R∞) as follows: We define R∞ = limk Rk with the direct
limit topology. This is the vector space spanned by finite sequences (x1, · · · , xk). Hence
we can define Gn(R∞) in the usual way (as a topological vector bundle) with respect to
n-dimensional subspaces of R∞.

Lemma 1.7. We have that γn∞ is a topological vector bundle of Gn(R∞).
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Proof. Let V ∈ Gn(R∞). Let UV be the open set given by the union of the open sets
Uk
V ⊂ Gn(Rn+k) where Uk

V is the set of subspaces of Rn+k which are transverse to V ⊥

as before. Then we have trivializations τk : γnk |Uk
V
→ Uk

V × Rk along Ui as before. The

trivialization τ : γn∞|UV
→ UV × Rk is the direct limit of these trivializations (I.e it is the

unique map whose restriction to Uk
V is τi). �

Theorem 1.8. Any bundle π : E → B over a paracompact base B of rank n admits a map
f : B → Gn(R∞) so that E is isomorphic to f∗γn∞.

Definition 1.9. Let h, h′ : E → γn∞ be bundle maps. A smooth family of bundle

maps (ht : E → γn∞)t∈[0,] joining h with h′ is a bundle map h̃ : [0, 1] × E → γn∞ so that

h̃|{t}×E=E = ht and so that h0 = h and h1 = h′. We say that h, h′ are bundle homotopic
there is a smooth family of bundle maps joining h with h′.

Theorem 1.10. Any two bundle maps h, h′ : E → γn∞ which are an isomorphism on each
fiber are bundle homotopic.

We will not prove this. The proof is contained in Milnor’s book (Chapter 5) and is acces-
sible. The idea of the proof of Theorem 1.8 is to use the fact that a paracompact space is an
increasing union of compact spaces and then use Lemma 1.5 some sort of limit argument.

Instead of proving these theorems we will talk about classifying spaces. This is a gener-
alization of γ1∞ → Gn(R∞).


