
1. Classifying Spaces.

Classifying Spaces

To make our lives much easier, all topological spaces from now on will be homeomorphic
to CW complexes.

Fact: All smooth manifolds are homeomorphic to CW complexes.
Kirby and Siebenmann show all topological manifolds in dimension 6= 4 are homeomorphic

to CW complexes.

Definition 1.1. A topological group is a group G whose group operations

µ : G×G→ G, (g1, g2)→ g1g2 and G→ G, g → g−1

are continuous. Let X be a topological space. If G is a group, we define Gop to be the
opposite group with multiplication µop(g, h) = µ(h, g), ∀g, h ∈ G. A left G-space is a
group homomorphism µ : G→ Homeo(X)op so that the map:

µ̃ : G×X → X, µ̃(g, x) = µ(g)(x)

is continuous. Usually if we have a G-space on X, we will write x.g instead of µ̃(g, x).
Also we will just call a left G-space a G-space or continuous G-action. Also the map
µ̃ : G×X → X is called a continuous G-action.

A morphism between two G-spaces µ, µ′ of G on X and X ′ respectively is a continuous
map f : X → X ′ so that the following diagram commutes:

µ̃ : G×X X

µ̃′ : G×X ′ X ′

(idG, f) f

Such a morphism is an isomorphism if f is a homeomorphism. (Exercise: show that an
isomorphism has an inverse morphism).

A G-subspace U ⊂ X of a G-space X is a subset U satisfying g.U = U for all g ∈ G.
This is a G-space so that the inclusion map U ↪→ X is a morphism of G-spaces.

The principal homogeneous space or G-torsor is a G-space

G ⊂ Homeo(G), g → (h→ gh).

If X is a G-space then the stabilizer of x ∈ X (denoted by Gx) is the set of g ∈ G so
that g.x = x. This is a subgroup of G. A G-action on X is free if Gx = id for all x ∈ X. In
other words, every non-trivial g in G sends each x ∈ X to a different point.

A G-action is transitive if for every x, y ∈ X, there is a g ∈ G so that g.x = y.

Exercise: show that a G-action on X is transitive and free if and only if it is a G-torsor.
Here are some examples of topological groups.

Example 1.2. All matrix groups are topological groups such asGL(Rk), SO(k), SU(k), GL(Ck).
1
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We also have infinite dimensional groups. Let X be a hausdorff topological space. Then
the group Homeo(X) has a natural topology called the compact open topology. This is
the topology with basis given by sets

U(V,K) ⊂ Homeo(K)

where V ⊂ G is open and K ⊂ G is compact and U(V,K) is the set of homeomorphisms
mapping V inside K.

Here we give a definition of a fiber bundle with structure group given by a topological
group G:

Definition 1.3. Let F be a G-space.
A fiber bundle with structure group G and fiber F is a map π : V −→ B between

topological spaces, an open cover (Ui)i∈S of B, and homeomorphisms τi : π−1(Ui) −→ Ui×F
called trivializations satisfying the following properties:

(1) Let πUi : Ui × F −→ Ui be the natural projection. Then π|π−1(Ui) = πi ◦ τi. In other
words, we have the following commutative diagram:

π−1(Ui) Ui × F

Ui

π|π−1(Ui)
πUi

τi

(2) The transition maps

τi ◦ τ−1j : (Ui × Uj)× F −→ (Ui × Uj)× F

are smooth maps satisfying:

τi ◦ τ−1j (x, z) = (x,Φij(x).z)

where

Φij : Ui ∩ Uj −→ G

is a continuous map.
We will call the maps Φij : Ui ∩ Uj −→ G transition data. Here the structure

group should be thought of as the transition data Φij , i, j ∈ S along with the G-action
on F .

Note that the maps Φij are part of the data defining such a bundle. Also note that each
fiber of E is a G-space. Also E itself is a G-space where the action preserves each fiber and
x ∈ π−1(π(x)) gets sent to g.x ∈ π−1(π(x)) for all x ∈ E.

Main Problem: Classify fiber bundles with structure group G and fiber F up to isomor-
phism.

A fiber bundle with fiber F is just a fiber bundle with structure group Homeo(F ).
Suppose we have another fiber bundle p′ : E′ → B′ with structure group G and fiber

F ′ then a Morphism covering a continuous map f : B′ → B is a continuous map
τ : E′ → E satisfying f ◦ π′ = π ◦ τ ′ which is also a homomorphism of G-spaces E and E′.

Here is a silly example: For any topological group G, we have the trivial G-action then
we have a fiber bundle with structure group G given by B × F . So a trivial fiber bundle can
have structure group G for any topological group G.
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Definition 1.4. Let F be a G-torsor. A principal G-bundle is a fiber bundle π : E → B
with structure group G and fiber F .

Because F is homeomorphic to G, we quite often assume that the fiber of π is G.

Definition 1.5. A G-space is X locally trivial if for every x ∈ X, there is an open G-
subspace U ⊂ X containing x ∈ X so that U is isomorphic to the G-space B×G for some B
where g ∈ G sends (b, h) ∈ B ×G to (b, hg) for all (b, h) ∈ B ×G.

Here is an alternative way of describing principal bundles when the structure group is G
(which can be very useful).

Lemma 1.6. Let X be a locally trivial G-space. Then X −→ X/G is a principal G-bundle.
Also for every principal G-bundle π : E −→ B, there is a locally trivial G-space X so that

E is isomorphic to the principal bundle X −→ X/G.

Exercise. (Hint: the action on E preserves each fiber and the restriction of this action to
each fiber is the corresponding G-torsor.)

We now give an important example of a principal G-bundle.

Example 1.7. Let p : V → B be a vector bundle of rank k. Let π : Fr(V )→ B be the fiber
bundle whose fiber at b ∈ B is the set of bases of π−1(B). This is a principal GL(Rk) bundle
called the frame bundle of V .

We will now generalize this notion of frame bundle to every fiber bundle with structure
group G.

Suppose that we have a principal G-bundle π : E → B and suppose that we have a G-space
X. Then we can form a new fiber bundle with fiber X as follows: Let τi : E|Ui → Ui×F, i ∈ S
be the trivializations defining E and let

Φij : Ui ∩ Uj → G

be the transition data for this principal bundle. Then we can define a new bundle E ×G X
with fiber X exactly the same transition data. In other words, the transition maps are:

τXh ◦ (τXi )−1 : Ui ∩ Uj ×X −→ Ui ∩ Uj ×X, τXh ◦ (τXi )−1(b, x) = (b,Φij(x).x).

This is called the bundle associated to the G-action µ.
Another way of describing this is as follows. We have a diagonal G-action on E ×X. We

define E ×G X ≡ (E ×X)/G. Then we have another G action on E ×G X sending (e, x) to
(g.e, x) and this is the locally trivial G-space corresponding to E ×G X.

Conversely, suppose that we have a a G-space F and a fiber bundle p : V → B with
structure group G and fiber F . Then we can construct a principal G-bundle called the
Frame bundle as follows: Let Φij : Ui ∩Uj → G be the transition data for the fiber bundle
p. Then the frame bundle of p : V → B is the fiber bundle with fiber G defined using the
exactly the same transition data.

Exercise: show that this definition of the frame bundle is identical to the definition of
frame bundle in the above example. Note that here a vector bundle is a fiber bundle with
structure group GL(Rk).
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Lemma 1.8. Let F be a G-space. The above discussion gives us a 1-1 correspondence
between principal G bundles over B and fiber bundles with structure group G and fiber F .
This correspondence sends a principal bundle to the bundle with associated G-action G ⊂
Homeo(X) and it inverse map sends a fiber bundle with structure group G→ Homeo(X) to
its associated frame bundle.

Proof: Exercise.
Everything can be done in the smooth category as well.
As a result of this discussion, classifying fiber bundles up to isomorphism is the same as

classifying the corresponding frame bundles up to isomorphism.

Definition 1.9. A principal bundle is Universal if its total space is contractible. We usually
write EG → BG for such a bundle. Here BG is called the Classifying space of G. The
group H∗(BG) is called the Group Cohomology of G.

Theorem 1.10. (Milnor) Every topological group G has a universal principal bundle.

Proof. idea: We will prove this is the case that G is a CW complex and the multiplication
map and inverse map are cellular maps (i.e. send the k-skeleton to the k-skeleton for each
k ∈ N≥0) and also when it is defined only using a countable number of cells. Examples of
such groups include SO(n), GL(n;R), GL(n;C), U(n), O(n). We can also consider limits of
such groups, such as limnGL(n;R).

Whiteheads theorem says that a continuous map of CW complexes inducing an isomor-
phism in πk for all k is a homotopy equivalence. The Hurewicz theorem tells us that for
all k ≥ 1, Hk(X) = 0 if πm(X) = 0 for all m ≤ k. Combining the Hurewicz theorem with
Whiteheads theorem, we have that if a continuous map of CW complexes is an isomorphism
on π1 and also induces an isomorphism on homology, then it is a homotopy equivalence.

This means that a simply connected CW complex whose homology groups all vanish then
it is contractible. Therefore it is sufficient to construct a ∞-universal bundle as ∞-bundles
are equivalent to universal bundles. In fact we will construct n-universal bundles En along
with morphisms Ek → Ek+1 → · · · . Then EG→ BG will be the direct limit of these bundles.

To do this we need the following definition:

Definition 1.11. Let A,B be two topological spaces. Then the join A ? B is defined as:

A ? B ≡ A×B × [0, 1]/ ∼

(a, b, 0) ∼ (a, b′, 0) and (a, b, 1) ∼ (a, b′, 1) ∀ a, a′ ∈ A ∀ b, b′ ∈ B.

A× {0}

B × {1}

[0, 1]

A ? B

The cone of A C(A) is the set

C(A) ≡ A× [0, 1]/ ∼, (a, 1) ∼ (a′, 1) ∀ a, a′ ∈ A.
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Note that the cone is contractible.
We have the following homeomorphism:

A ? B ∼= (C(A)×B) ∪A×B (A× C(B)). (1)

C(A)×B
A× C(B)

A×B
If A is a CW complex then C(A) is also a CW complex. The point is that the cone of each

n-cell is an n-cell with an n + 1 cell attached along the n-cell. One then creates C(A) by
gluing these pairs of cells together. Also the product of two CW complexes is a CW complex.
This means that the join A×B is also a CW complex by (1).

Lemma 1.12. A ? A is simply connected if A is path connected.

Proof. Equation (1) tells us A ? A ∼= (C(A) × A) ∪A×A (A × C(A)). We use van Kampens
theorem.

So

π1(A ? A) = π1(C(A)×A) ?π1(A×A) π1(A× C(A)).

This is trivial since the maps

α : π1(A×A)→ π1(C(A)×A) = π1(A),

β : π1(A×A)→ π1(A× C(A)) = π1(A)

are the natural projection maps to the first and second factors respectively and since the map
α× β : π1(A×A)→ π1(A)× π1(B) is an isomorphism.

�

Lemma 1.13. If H∗(A) = 0 for ∗ ≤ k then H∗(A ? A) = 0 for ∗ ≤ k + 1.

Proof. Equation (1) tells us A?A ∼= (C(A)×A)∪A×A (A×C(A)). We now have the Mayor-
Vietoris sequence:

Hk+1(A×A)
a−→ Hk+1(C(A)×A)⊕Hk+1(A× C(A))

→ Hk+1(A ? A)→ Hk(A×A).

We have that Hk(A×A) = 0 by the Künneth formula and also the map a is an isomorphism.
Hence Hk+1(A ? A) = 0.

�

Lemma 1.14. Suppose that B is a G-space. Then B × G with the product G action is
isomorphic to B ×G where G acts only on the second fact by left multiplication.

Proof. The isomorphism is the map (b, g)→ (g−1.b, g). �
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Lemma 1.15. Let X1, X2 be locally trivial G-spaces. Then X1 ? X2 is a locally trivial
G-space. Here G acts on X1 ? X2 by g.(x1, x2, t) = (g.x1, g.x2, t).

Proof. It is locally trivial for the following reason: Let U1 ⊂ X1 and U2 ⊂ X2 be G invariant
open subsets isomorphic to B1 × G and B2 × G where G acts trivially on Bi and by left
multiplication on G. Then

C(U1)× U2 ⊂ X1 ? X2, U1 × C(U2) ⊂ X1 ? X2

are isomorphic to product trivializations by Lemma 1.14. �

We will now continue with the proof of Theorem 1.10. We let En = G?G.. ? G multiplied
n times. This is a locally trivial G-space by Lemma 1.15. Also π1(En) = 0 for n ≥ 2 and
Hk(En) = 0 for all 0 < k < n by Lemmas 1.12 and 1.13. Let EG ≡ limn→∞En. This
is a contractible locally trivial G-space since it is simply connected and all of its reduced
homology groups are 0.

�

Definition 1.16. A principal G-bundle is trivial if it isomorphic to a product B ×G.

Lemma 1.17. A principal bundle π : E → B is trivial if and only if it admits a section.

Proof. If it is trivial then it has the section given by id.
Conversely suppose E has a section σ. For each x ∈ E there is a unique gx ∈ G so that

x = g.σ(π(x)). Hence we have a bundle isomorphism

φ : E → B ×G, φ(x) = (π(x), gx).

Exercise: show that the above map is a bundle isomorphism. �

Definition 1.18. Let π : E → B be a fiber bundle and let f : A→ B be a continuous map.

A lift if f is a continuous map f̃ : A→ E satisfying π ◦ f̃ = f .
A continuous map π : E → B satisfies the homotopy lifting property if for any map

F : [0, 1]×B′ → B and a lift F̃0 : B′ → E of F |{0}×B′ , there is a lift F̃ : [0, 1]×B′ → B of F

satisfying F̃ |{0}×B′ = F̃0.

Lemma 1.19. Every fiber bundle satisfies the homotopy lifting property (assuming the base
space and total space are CW complexes).

Proof. Let F̃0,B,B
′ and F be as in the above definition. It is sufficient for us to replace F ∗E

with E. Hence we can assume that F is the identity map and that F̃0 is a section of E|{0}×B.
To finish our lemma it is sufficient to extend this section to all of [0, 1]×B.

We do this cell by cell on B. We can ensure that this cell decomposition is fine enough
(by subdividing) so that the restriction of E to each cell is isomorphic to a trivial bundle.

Therefore it is sufficient to prove the following: Suppose that B is the n-ball and that we
have a section σ of E|N where N = ([0, 1] × ∂B) ∪ ({0} × B). Then we wish to construct a
new section σ′ of E satisfying σ′|N = σ|N .

Since E is trivial, the section σ corresponds to a continuous map σ : N → F and any
section σ′ as above corresponds to a map σ′ : B → F satisfying σ′|N = σN . We have that
[0, 1]×B deformation retracts onto N . Let r : [0, 1]×B → N be the corresponding retraction
(I.e. r ◦ r = r). Then our section is the map σ′ ≡ σ ◦ r. �

Corollary 1.20. If π : E → B is a fiber bundle with contractible base (again E,B are CW
complexes). Then it is isomorphic to a trivial bundle.
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Proof. Let πFr : Fr(E) → B be the corresponding frame bundle. Then E is trivial if and
only if Fr(E) admits a section.

Let C : [0, 1] × B → B be our deformation retraction to a point ? ∈ B. Let ?̃ ∈
C∗Fr(E)|{(1,?)}. Let C̃0 : [0, 1] × B → C∗Fr(E) send (t, b) to ?̃. Then since Fr(E) sat-

isfies the homotopy lifting property, we get a map C̃ : [0, 1] × B → C∗Fr(E) satisfying

(C∗πFr) ◦ C̃ = id. Hence C̃|{0}×B is a section of C∗Fr(E)|{0}×B which is isomorphic to
Fr(E) due to the fact that C|{0}×B is the identity map. �

The homotopy lifting property is related to Ehresmann connections in the following way:

Definition 1.21. Let π : E → B be a smooth fiber bundle. An Ehresmann connection
is a subbundle H ⊂ TE of the tangent bundle of E so that dπ|Hx : Hx → Tπ(x)B is an
isomorphism for all x ∈ E.

A path p : [0, 1]→ E is horizontal if ṗ(t) ∈ Hp(t) for all t ∈ [0, 1].

By uniqueness of ODE’s, for every smooth path p : [0, 1] → B and point e ∈ π−1(p(0)),
there is at most one horizontal path p̃ : [0, 1] → E satisfying π(p̃(t)) = p(t) and p̃(0) = e. If
F is compact then such a path p̃ exists as well.

B

E
H

p̃

p

π

Also if F is compact then for any smooth path p : [0, 1] → B we have an associated
parallel transport map PH,p : E|p(0) → E|p(1) sending e ∈ E|p(0) to p̃e(1) where p̃e is the
unique horizontal lift of p satisfying p̃e(0) = e.

Lemma 1.22. Every smooth fiber bundle has an Ehresmann connection.

Proof. Let T vE → E be the vertical tangent bundle of E corresponding to vectors which
are tangent to the fibers of E. Ehresmann connections correspond to non-zero sections s of
the bundle Hom(TE, T vE) with the property that s|T vE : T vE → T vE is the identity map
because Hx = ker(s(x)) is horizontal.

Now since E is locally trivial, we have such sections si of E|Ui for some open cover (Ui)i∈S .
Choose a partition of unity (ρi)i∈S subordinate to this cover. Then

∑
i∈S λi.si is the section

we want. �

Now lets look at the homotopy lifting property in the above context. We have a smooth
fiber bundle π : E → B with compact fibers and an Ehresmann connection H. Let F :

B′ × [0, 1]→ B be a smooth map and let F̃0 : B′ → B be a lift of F |B′×{0}. Let

Pb′,t : π−1(F (b′, 0))→ π−1(F (b′, t))
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be the parallel transport map along the path

Fb′ : [0, t]→ B, Fb′(s) = F (b′, s)

for all b′ ∈ B′. Then

F̃ : B′ × [0, 1]→ E, F̃ (b′, t) = Pb′,t(F̃0(b
′))

is a lift of F which is equal to F̃0 along B′ × {0}.

Definition 1.23. A family of principal bundles is a principle bundle Ẽ over [0, 1] × B.

Here we define Ẽt to be its restriction to {t} ×B = B.

A family of principle bundles as above joins π : E → B with π′ : E′ → B if Ẽ0 is

isomorphic to E and Ẽ1 is isomorphic to E′.

Definition 1.24. Let π : E → B and π′ : E′ → B be principal G bundles. Recall that E
and E′ are locally trivial G-spaces.

We define E ×G E′ to be the quotient (E ×E′)/G where G acts diagonally (i.e. g.(e, e′) =
(g.e, g.e′)). This has a natural map p : E ×G E′ → B sending (e, e′) to π(e) = π′(e′).

Lemma 1.25. p : E×GE′ → B is a principal G bundle. Also it admits a section if and only
if E is isomorphic to E′

Proof. If we have trivializations τi : E|Ui → Ui × G and τ ′i : E′|Ui → Ui × G then we get a
trivialization

E ×G E′|Ei → G×G/G ∼= G, x→ (τi(x), τ ′i(x)).

This makes E ×G E′ into a principal bundle.
If we have an isomorphism φ : E → E′ then we have a section σ : B → E ×G E′

sending b to (x, φ(x)) for any choice of x ∈ E|b (it does not matter what x we choose since
(g.x, φ(g.x)) = (g.x, gφ(x)) = (x, φ(x))).

Conversely if E ×G E′ has a section σ, then we have an isomorphism E → E′ sending
x ∈ E to φ(x) ∈ E′ where φ(x) satisfies (x, φ(x)) = σ(x). �

Lemma 1.26. If a family of principle bundles joins π : E → B with π′ : E′ → B then E is
isomorphic to E′.

Proof. Here we use the homotopy lifting property. Let Ẽ be our family of principal bundles.
Let pr∗E be the pullback of E to [0, 1]×B via the natural projection map pr : [0, 1]×B → B.

It is sufficient to construct an isomorphism Ẽ → pr∗E. Hence it is sufficient to construct a

section of A ≡ Ẽ ×G pr∗E.

Since Ẽ|{0}×B is isomorphic to pr∗E|{0}×B, we have a section of A|{0}×B. By the homotopy
lifting property this extends to a section of A. �

Proposition 1.27. Let πG : EG → BG be any universal G-bundle. For any principal G
bundle π : E → B, there is a continuous map f : B → BG so that E is isomorphic to f∗EG.

Also f∗1EG is isomorphic to f∗2EG if and only if f1 is homotopic to f2.

Again, here we are assuming that all topological spaces in the above proposition are CW
complexes to make our lives easier.

Proof. In some sense this proof is similar in spirit to Grassmannian case. Having said that
instead of dealing with an arbitrary set of trivializations, we will use trivializations over each
cell of the base B.
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We do this cell by cell on B. We subdivide our cell decomposition so that the restriction
of E to each cell is trivial.

Let Bi be the i-skeleton of B. First of all the bundle E is trivial over B0 and hence we
have a constant map f0 : B0 → BG.

Now suppose that we have constructed f i : Bi → BG so that E|Bi is isomorphic to
(f i)∗EG. We wish to extend f i to a new map f ′ over an i+ 1-cell D ⊂ B which is attached
to Bi.

By Lemma 1.25, the isomorphism E|∂D ∼= (f i)∗EG|∂D corresponds to a section σ of

E ×G (f i)∗EG|∂D.
Also since E|D is trivial, we get by Corollary 1.20 isomorphisms:

E ×G (f i)∗EG|∂D ∼= (D ×G)×G (f i)∗EG|∂D ∼= (f i)∗EG|∂D. (2)

Under these isomorphisms, the section σ corresponds to a map σ′ : ∂D → EG satisfying
πEG ◦ s′ = f . Since EG is contractible, the map σ′ extends to a map σ′′ : D → EG.

We define

f ′ : D → BG, f ′ ≡ πEG ◦ s′′.
This is equal to f i along ∂D. Also under the identification (2), σ′′ corresponds to a section
σ̃ of E ×G (f i)∗EG|∂D extending the section σ. Hence the isomorphism E|∂D ∼= (f i)∗EG|∂D
extends to an isomorphism E|D ∼= (f ′)∗EG|D.

Hence by induction we have constructed a map f : B → BG so that E ∼= f∗EG.
We now need to prove uniqueness: Suppose we have two maps f1, f2 : B → BG so that

f∗1EG
∼= f∗2EG. We wish to show that f1 is homotopic to f2. Again we do this cell by cell.

Suppose by induction, we have homotoped f1 and f2 so that f1|Bi = f2|Bi . We now wish to
homotope f1|D to f2|D relative to ∂D over an i+ 1-cell D ⊂ B which is attached to Bi.

Since f∗1EG and f∗2EG are trivial over D by Corollary 1.20 as D is contractible, we get
maps

σ1 : D → EG, σ2 : D → EG

satisfying πEG ◦ σi = fi for i = 1, 2 and σ1|∂D = σ2|∂D.
Since EG is contractible and σ1|∂D = σ2|∂D, we have that σ1 is homotopic to σ2 relative

to ∂D. Hence f1|D = πEG ◦ σ1 is homotopic to f2|D = πEG ◦ σ2 relative to ∂D. Hence we
are done by induction. �

Theorem 1.28. Let p : E −→ B be a fibration with fiber F . (More generally a continuous
map satisfying the homotopy lifting property). Then we have a long exact sequence of
homotopy groups:

πk(F ) −→ πk(E) −→ πk(B) −→ πk−1(F ) −→

We won’t prove this theorem. The connecting map

πk(B) −→ πk−1(F )

is constructed as follows: Let ?B ∈ B and ?F ∈ F ⊂ E be the basepoints of B and F
respectively so that π(?F ) = ?B. Let b : Sk −→ B be an element of πk(B). We have a
homeomorphism

Sk−1 × [0, 1]/ ∼∼= Sk

where (x, i) ∼ (x′, i) for all x, x′ ∈ Sk−1 and i = 0, 1. Hence we have natural surjection

σ : Sk−1 × [0, 1] � Sk
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so that Sk−1 × {i} maps to a point ?i for i = 0, 1. We will assume that ?0 = ?B. Now let
p : [0, 1] −→ Sk be a path joining σ(Sk−1 × {1}) with σ(Sk−1 × {0}). Hence we have map

b ◦ σ : Sk−1 × [0, 1] −→ B.

We also have a lift
b̃0 : Sk−1 × {0} −→ E, b̃0(x) = ?F .

By the homotopy lifting property this means we have a lift b̃ : Sk−1× [0, 1] −→ E of b. Hence
we have an element

b̃|Sk−1×{1} : Sk−1 −→ π−1(?1) ∼= π−1(?0) ∼= F

of πk−1(F ).

Corollary 1.29. Let G be a topological group and π : EG −→ BG be a universal principal
G bundle. Then πk(EG) = πk−1(G).

The above corollary combined enables us to classify principal G bundles on spheres (as-
suming that we know the homotopy groups of G). In particular, if F is a fixed G space, then
there is a 1-1 correspondence between fiber bundles over Sm with structure group G and fiber
F and elements of πm−1(G).

Such fiber bundles can also be constructed explicitly using the clutching construction.
Let b : Sm−1 −→ G represent an element of πm−1(G). Since Sm is given by two balls glued
together along their boundary, we have open subsets U1, U2 ⊂ Sm diffeomorphic to open
m-balls so that U1 ∩ U2 deformation retracts on to Sm−1 ⊂ Sm. Hence we have a map
Φ12 : U1 ∩U2 → G whose restriction to Sm−1 is b. This gives the transition data for the fiber
bundle representing [b] ∈ πm−1(G).

To show how practical this is, let us classify rank 3 vector bundles over S3. In this case the
structure group is GL(3) which is homotopic to O(3). We can calculate π2(O(3)) as follows:

The connected component of O(3) containing id is SO(3) so it is sufficient to compute
π2(SO(3)). Each element of SO(3) is a rotation about some axis. This means that we have a
fibration SO(3)− id→ RP2 sending a ρ ∈ SO(3) to the corresponding unique axis of rotation
of ρ. The fiber is SO(2)− id ∼= (0, 1). So we have the following homotopy log exact sequence:

πk((0, 1)) −→ πk(SO(3)− id) −→ πk(RP2) −→ πk((0, 1))

which implies that πk(SO(3)− id) = πk(RP2).
Now π2(RP2) = π2(S

2) = Z and hence π2(SO(3) − id) = Z. The generator of π2(RP2) is
the double covering map b : S2 −→ RP2 and hence the generator of π2(SO(3) − id) is a lift

b̃ : S2 −→ SO(3)− id of b to SO(3)− id. Here b̃(x) is defined as a clockwise rotation of angle
θ ∈ (0, 2π) about the axis x. If we choose θ to be small then this is a small sphere near the

point id ∈ SO(3). This means that b̃(S2) is contained in a small chart of SO(3) and hence is
contractible. Hence the map

β : π2(SO(3)− id) −→ π2(SO(3))

is 0. Also since SO(3) is a three dimensional manifold, the map β is surjective as any map

h : S2 −→ SO(3) can be perturbed to a map ĥ : S2 −→ SO(3) − id. Hence π2(SO(3)) = 0.
Therefore every rank 3 vector bundle on S3 is trivial.

Grassmannian
To show that the Grassmannian Grn(R∞) classifies vector bundles, all we need to do

is show that its frame bundle is contractible. The frame bundle EG is the set of linearly
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independent sets of n vectors v1, · · · , vn in R∞. Hence EG is an open subset of (R∞ − 0)n.
Let D : R∞ − 0 −→ N send a vector (x1, · · · , xk, 0, 0, 0, 0, 0, 0, · · · ) where xk 6= 0 to k. Define

D̂ : (R∞ − 0)n −→ (R∞ − 0)n, D̂(v1, · · · , vn) ≡ max(D(v1), · · · , D(vn)).

Let T : R∞ − 0 −→ R∞ − 0 be the right shift operator sending (x1, x2, · · · ) to (0, x1, x2, · · · )
and define

T̂ : (R∞ − 0)n −→ (R∞ − 0)n, T̂ (v1, · · · , vn) ≡ (T (v1), · · · , T (vn).

Then we get a new operator

W : (R∞ − 0)n −→ (R∞ − 0)n, W (v) ≡ T̂ D̂(v)(v).

In other words, W shifts the n vectors in (R∞ − 0)n so far to the right that they do not
interact anymore.

Let ek = (0, 0, · · · , 0, 1, 0, 0, · · · , ) be the kth standard basis vector. Let v0 ≡ (e1, · · · , en) ∈
EG. We will construct a deformation retraction from EG to the point v0. To do this we first
show that W is homotopy equivalent to the identity map. This homotopy is the map

α : [0, 1]× EG −→ EG, α(t, v) ≡ (1− t)v + tW (v).

Note that α(t, v) is always a set of n linearly independent vectors since W shifts very far to
the right. The following is a homotopy from W to the constant map EG −→ {v0}:

β : [0, 1]× EG −→ EG, β(t, v) ≡ tv0 + (1− t)W (v).

Again this is a well defined map since v0 and W (v) do not interact in any way. Hence EG
is contractible. Therefore the frame bundle of Grn(R∞) is a classifying space and hence
BG = Grn(R∞).


