1. Cell decomposition of Grassmannian.

We will first describe the cell structure. We have natural inclusions:

$$
\mathbb{R}^{0} \subset \mathbb{R}^{1} \subset \cdots \subset \mathbb{R}^{m-1} \subset \mathbb{R}^{m}
$$

An n-plane $X \subset \mathbb{R}^{m}$ gives us a sequence of integers:

$$
\operatorname{dim}\left(X \cap \mathbb{R}^{0}\right)=0 \leq \operatorname{dim}\left(X \cap \mathbb{R}^{1}\right) \leq \cdots \operatorname{dim}\left(X \cap \mathbb{R}^{m-1}\right) \leq \operatorname{dim}\left(X \cap \mathbb{R}^{m}\right)=n
$$

Two consecutive integers in this sequence differ by at most one due to the fact that $\operatorname{dim}\left(\mathbb{R}^{i}\right)-$ $\operatorname{dim}\left(\mathbb{R}^{i-1}\right)=1$. Hence the above sequence contains n-jumps of size 1 .

Definition 1.1. A Schubert symbol is a sequence of n integers $0 \leq \sigma_{1}<\sigma_{2}<\cdots<\sigma_{n} \leq$ m. We define $e(\sigma) \subset G r_{n}\left(\mathbb{R}^{m}\right)$ to be the set of $X \subset G r_{n}\left(\mathbb{R}^{m}\right)$ so that $\operatorname{dim}\left(X \cap \mathbb{R}^{\sigma_{i}}\right)=i$ and $\operatorname{dim}\left(X \cap \mathbb{R}^{\sigma_{i}-1}\right)=i-1$. In other words, σ_{i} is the point where the dimension 'jumps'. The closure $\overline{e(\sigma))}$ is called a Schubert variety.

We will show later that this is an open cell of dimension $d(\sigma)=\sum_{i=1}^{n}\left(\sigma_{i}-i\right)$. Define

$$
H_{k} \equiv\left\{\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k}: x_{k}>0\right\}
$$

This is the upper half plane. We have that $X \in e(\sigma)$ if and only if it has a basis $v_{1}, \cdots, v_{n} \in$ \mathbb{R}^{m} so that $v_{i} \in H^{\sigma_{i}}$ for all $i \in\{1, \cdots, n\}$.

We can rescale the basis so that the last non-zero coordinate in v_{i} is 1 . This means that $X \in e(\sigma)$ if and only if the basis v_{1}, \cdots, v_{n} for X can be described as the row space of the $n \times m$ matrix:

$$
\left[\begin{array}{ccccccccc}
* & \cdots & * 10 & \cdots & 000 & \cdots & 000 & \cdots & 0 \\
* & \cdots & * * * & \cdots & * 10 & \cdots & 000 & \cdots & 0 \\
\vdots & \vdots \\
* & \cdots & * * * & \cdots & * * * & \cdots & * 10 & \cdots & 0
\end{array}\right]
$$

Here the i-th row has $\sigma_{i}-1$ entries with anything in them followed by a 1 and then followed by $m-\left(\sigma_{i}-1\right)$ zeros.
Lemma 1.2. For each $X \in e(\sigma)$, there is a unique orthonormal basis

$$
\left(v_{1}, \cdots, v_{n}\right) \in \prod_{i=1}^{n} H^{\sigma_{i}}
$$

of X.
Proof. Since $\operatorname{dim}\left(X \cap \mathbb{R}^{\sigma_{1}}\right)=1$, there are only two unit vectors inside $X \cap \mathbb{R}^{\sigma_{1}}$ and only one inside $X \cap H^{\sigma_{1}}$. Hence v_{1} is unique.

Now $\operatorname{dim}\left(X \cap \mathbb{R}^{\sigma_{2}}\right)=2$. There are at most two unit vectors inside $X \cap \mathbb{R}^{\sigma_{2}}$ which are orthogonal to v_{1}. Hence there is only one such vector inside $X \cap H^{\sigma_{2}}$. Hence v_{2} is unique.

We now continue by induction giving us our result.
Definition 1.3. Let $e^{\prime}(\sigma)$ be the set of orthonormal n-frames $\left(v_{1}, \cdots, v_{n}\right)$ so that $v_{i} \in H^{\sigma_{i}}$. $\bar{e}^{\prime}(\sigma)$ be the set of orthonormal n-frames $\left(v_{1}, \cdots, v_{n}\right)$ so that v_{i} is in the closure of $H^{\sigma_{i}}$.

Note that $\overline{e^{\prime}(\sigma)}=\bar{e}^{\prime}(\sigma)$. The discussion above tells us that $e^{\prime}(\sigma)$ is homeomorphic to $e(\sigma)$. We have the following lemma:
Lemma 1.4. The set $\bar{e}^{\prime}(\sigma)$ is a topologically closed cell of dimension $d(\sigma)=\sum_{i=1}^{n}\left(\sigma_{i}-i\right)$ whose interior maps homeomorphically to $e(\sigma)$. and

As a result, $e(\sigma)$ is an open cell of dimension $d(\sigma)$ and the map $\partial\left(\bar{e}^{\prime}(\sigma)\right) \longrightarrow G r_{n}\left(\mathbb{R}^{m}\right)$ is the gluing map for the boundary of the corresponding n-cell.

Proof. We proceed by induction on n. The set $\bar{e}^{\prime}\left(\sigma_{1}\right)$ is the set of vectors ($x_{1}, \cdots, x_{\sigma_{1}}, 0, \cdots, 0$) so that $\sum_{i=1}^{\sigma_{1}} x_{i}^{2}=11$ and $x_{\sigma_{1}} \geq 0$. This is a closed hemisphere of dimension $\sigma_{1}-1$ and hence is homeomorphic to the disk of dimension $\sigma_{1}-1$.

Now suppose $\bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ is homeomorphic to a disk of dimension $\sum_{i=1}^{n}\left(\sigma_{i}-i\right)$ and consider $\bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n+1}\right)$. The key idea here is to construct a homeomorphism

$$
\beta: \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right) \times D \longrightarrow \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}, \sigma_{n+1}\right)
$$

where D is a dimension $\sigma_{n+1}-(n+1)$ ball.
Let

$$
T_{u, v}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}
$$

be the unique rotation sending u to v and fixing all vectors orthogonal to u and v. This has the following properties:
(1) $T_{u, v} x$ is continuous in u, v and x and
(2) if $u, v \in \mathbb{R}^{k}$ then $T_{u, v}(x)=x+a$ where $a \in \mathbb{R}^{k}$. In other words, it fixes $x \bmod \mathbb{R}^{k}$.

Define $b_{i} \equiv e_{\sigma_{i}}$ for all $i=1, \cdots, n$ (in other words, the σ_{i} th coordinate is 1 and all the other coordinates are 0). So $\left(b_{1}, \cdots, b_{n}\right) \in \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$. For each $x=\left(x_{1}, \cdots, x_{n}\right) \in$ $\bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$, define

$$
T_{x}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}, \quad T_{x} \equiv T_{b_{n}, x_{n}} \circ \cdots \circ T_{b_{1}, x_{1}} .
$$

Let

$$
D \equiv\left\{u \in H^{\sigma_{n+1}}: u \cdot u=1, \quad u \cdot b_{i}=0 \quad \forall i=1, \cdots, n\right\} .
$$

Here D is homeomorphic to a closed hemisphere inside $H^{\sigma_{n+1}}$ and hence is homeomorphic to a ball of dimension $\sigma_{n+1}-(n+1)$. Define:

$$
\beta: \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right) \times D \longrightarrow \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}, \sigma_{n+1}\right), \quad \beta(x, u)=\left(x, T_{x} u\right)
$$

This map is well defined since:

- T fixes $H^{\sigma_{n+1}}$ and since
- $\left(\left(x_{1}, \cdots, x_{n}\right), T_{x_{1}, \cdots, x_{n}} u\right)$ is an orthonormal basis as:

$$
T_{x_{1}, \cdots, x_{n}}^{-1}\left(\left(x_{1}, \cdots, x_{n}\right), T_{x_{1}, \cdots, x_{n}} u\right)=\left(b_{1}, \cdots, b_{n}, u\right)
$$

which is orthonormal and T is an isometry.
Also β is an invertible continuous map and so is a homeomorphism. Hence we are done by induction.

A similar induction process tells us that the interior of $\bar{e}^{\prime}(\sigma)$ is the interior of $\bar{e}^{\prime}(\sigma)$ for all σ.

We now need to show that the interior of $\bar{e}^{\prime}(\sigma)$ maps homeomorphically onto $e(\sigma)$ for all σ. The interior of $e\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ corresponds to orthonormal vectors v_{1}, \cdots, v_{n} so that $v_{i} \in H^{\sigma_{i}}$ for all $i=1, \cdots, n$. These are precisely the elements in the interior of $\bar{e}^{\prime}(\sigma)$.

Theorem 1.5. The $\binom{m}{n}$ sets $e\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ for all n form a cell complex for $G r_{n}\left(\mathbb{R}^{m}\right)$. Also taking the limit as $m \rightarrow \infty$, one gets an infinite cell decomposition of $G r_{n}\left(\mathbb{R}^{\infty}\right)$

Proof. Basically we need to show that the boundary of $\bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ gets mapped to images of cells of lower dimension.

Let $\left(v_{1}, \cdots, v_{n}\right) \in \bar{e}^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)-e^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$. Now $v_{i} \in H^{\sigma_{i}}$ for all $i \in 1, \cdots, n$. Also since $\left(v_{1}, \cdots, v_{n}\right) \notin e^{\prime}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$, there is some $j \in\{1, \cdots, n\}$ so that $v_{j} \in H^{\sigma_{j}-1}$. Define $\sigma_{i}^{\prime} \equiv \sigma_{i}$ for all $i \neq j$ and $\sigma_{j}^{\prime} \equiv \sigma_{j}-1$. Then $v_{i} \in H^{\sigma_{i}^{\prime}}$ for all $i=1, \cdots, n$ and hence $\left(v_{1}, \cdots, v_{n}\right)$ maps to the image of $\bar{e}^{\prime}\left(\sigma_{i}^{\prime}\right)$ which is the image of a lower dimensional cell.

We have that $G r_{n}\left(\mathbb{R}^{\infty}\right)$ has the corresponding direct limit cell complex with the direct limit topology.

Definition 1.6. A partition of an integer $r \geq 0$ is an unordered sequence of positive integers i_{1}, \cdots, i_{s} which sum to r. The number of partitions of r is denoted by $p(r)$.
e.g. The partitions of 4 are

$$
1,1,1,1, \quad 1,1,2, \quad 1,3, \quad, 2,2, \quad 4
$$

and so $p(4)=5$. Zero has 1 partition which is the vacuous partition.
Corollary 1.7. The number of r cells in $G r_{n}\left(\mathbb{R}^{m}\right)$ is the number of partitions of r which each number in the partition is $\leq m-n$.

In particular, the number of r cells in $G r_{n}\left(\mathbb{R}^{\infty}\right)$ is $p(r)$.
Proof. The r cells correspond to sequences

$$
1 \leq \sigma_{1}<\cdots<\sigma_{n} \leq m
$$

so that $\sum_{i=1}^{n}\left(\sigma_{i}-i\right)=r$. Let l be the number of terms where $\sigma_{i}-i=0$. Hence $\sigma_{l}-l, \cdots, \sigma_{n}-n$ is our partition of r. Also since $\sigma_{i} \leq m-(n-i)$ for all i, we get that $\sigma_{i}-i \leq m-n$ for all i.

Conversely if $0 \leq j_{1} \leq j_{s} \leq m-n$ is a partition of r so that $j_{i} \leq m-n$ for all i then we define $\sigma_{i} \equiv i$ for all $i \leq n-s$ and $\sigma_{i} \equiv j_{i+s-n}$ for all $i>n-s$.

