
1. Cell decomposition of Grassmannian.

We will first describe the cell structure. We have natural inclusions:

R0 ⊂ R1 ⊂ · · · ⊂ Rm−1 ⊂ Rm.
An n-plane X ⊂ Rm gives us a sequence of integers:

dim(X ∩ R0) = 0 ≤ dim(X ∩ R1) ≤ · · · dim(X ∩ Rm−1) ≤ dim(X ∩ Rm) = n.

Two consecutive integers in this sequence differ by at most one due to the fact that dim(Ri)−
dim(Ri−1) = 1. Hence the above sequence contains n-jumps of size 1.

Definition 1.1. A Schubert symbol is a sequence of n integers 0 ≤ σ1 < σ2 < · · · < σn ≤
m. We define e(σ) ⊂ Grn(Rm) to be the set of X ⊂ Grn(Rm) so that dim(X ∩ Rσi) = i and
dim(X ∩ Rσi−1) = i − 1. In other words, σi is the point where the dimension ‘jumps’. The

closure e(σ)) is called a Schubert variety.

We will show later that this is an open cell of dimension d(σ) =
∑n

i=1(σi − i). Define

Hk ≡
{

(x1, · · · , xk) ∈ Rk : xk > 0
}
.

This is the upper half plane. We have that X ∈ e(σ) if and only if it has a basis v1, · · · , vn ∈
Rm so that vi ∈ Hσi for all i ∈ {1, · · · , n}.

We can rescale the basis so that the last non-zero coordinate in vi is 1. This means that
X ∈ e(σ) if and only if the basis v1, · · · , vn for X can be described as the row space of the
n×m matrix: 

∗ · · · ∗10 · · · 000 · · · 000 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗10 · · · 000 · · · 0
...

...
...

...
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗10 · · · 0


Here the i-th row has σi−1 entries with anything in them followed by a 1 and then followed

by m− (σi − 1) zeros.

Lemma 1.2. For each X ∈ e(σ), there is a unique orthonormal basis

(v1, · · · , vn) ∈
n∏
i=1

Hσi

of X.

Proof. Since dim(X ∩Rσ1) = 1, there are only two unit vectors inside X ∩Rσ1 and only one
inside X ∩Hσ1 . Hence v1 is unique.

Now dim(X ∩ Rσ2) = 2. There are at most two unit vectors inside X ∩ Rσ2 which are
orthogonal to v1. Hence there is only one such vector inside X ∩Hσ2 . Hence v2 is unique.

We now continue by induction giving us our result. �

Definition 1.3. Let e′(σ) be the set of orthonormal n-frames (v1, · · · , vn) so that vi ∈ Hσi .
e′(σ) be the set of orthonormal n-frames (v1, · · · , vn) so that vi is in the closure of Hσi .

Note that e′(σ) = e′(σ). The discussion above tells us that e′(σ) is homeomorphic to e(σ).
We have the following lemma:

Lemma 1.4. The set e′(σ) is a topologically closed cell of dimension d(σ) =
∑n

i=1(σi − i)
whose interior maps homeomorphically to e(σ). and
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As a result, e(σ) is an open cell of dimension d(σ) and the map ∂(e′(σ)) −→ Grn(Rm) is
the gluing map for the boundary of the corresponding n-cell.

Proof. We proceed by induction on n. The set e′(σ1) is the set of vectors (x1, · · · , xσ1 , 0, · · · , 0)
so that

∑σ1
i=1 x

2
i = 11 and xσ1 ≥ 0. This is a closed hemisphere of dimension σ1−1 and hence

is homeomorphic to the disk of dimension σ1 − 1.
Now suppose e′(σ1, · · · , σn) is homeomorphic to a disk of dimension

∑n
i=1(σi − i) and

consider e′(σ1, · · · , σn+1). The key idea here is to construct a homeomorphism

β : e′(σ1, · · · , σn)×D −→ e′(σ1, · · · , σn, σn+1)

where D is a dimension σn+1 − (n+ 1) ball.
Let

Tu,v : Rm −→ Rm

be the unique rotation sending u to v and fixing all vectors orthogonal to u and v. This has
the following properties:

(1) Tu,vx is continuous in u, v and x and

(2) if u, v ∈ Rk then Tu,v(x) = x+ a where a ∈ Rk. In other words, it fixes x mod Rk.
Define bi ≡ eσi for all i = 1, · · · , n (in other words, the σith coordinate is 1 and all the

other coordinates are 0). So (b1, · · · , bn) ∈ e′(σ1, · · · , σn). For each x = (x1, · · · , xn) ∈
e′(σ1, · · · , σn), define

Tx : Rm −→ Rm, Tx ≡ Tbn,xn ◦ · · · ◦ Tb1,x1 .

Let

D ≡ {u ∈ Hσn+1 : u · u = 1, u · bi = 0 ∀ i = 1, · · · , n} .
Here D is homeomorphic to a closed hemisphere inside Hσn+1 and hence is homeomorphic to
a ball of dimension σn+1 − (n+ 1). Define:

β : e′(σ1, · · · , σn)×D −→ e′(σ1, · · · , σn, σn+1), β(x, u) = (x, Txu).

This map is well defined since:

• T fixes Hσn+1 and since
• ((x1, · · · , xn), Tx1,··· ,xnu) is an orthonormal basis as:

T−1x1,··· ,xn((x1, · · · , xn), Tx1,··· ,xnu) = (b1, · · · , bn, u)

which is orthonormal and T is an isometry.

Also β is an invertible continuous map and so is a homeomorphism. Hence we are done by
induction.

A similar induction process tells us that the interior of e′(σ) is the interior of e′(σ) for all
σ.

We now need to show that the interior of e′(σ) maps homeomorphically onto e(σ) for all σ.
The interior of e(σ1, · · · , σn) corresponds to orthonormal vectors v1, · · · , vn so that vi ∈ Hσi

for all i = 1, · · · , n. These are precisely the elements in the interior of e′(σ).
�

Theorem 1.5. The
(
m
n

)
sets e(σ1, · · · , σn) for all n form a cell complex for Grn(Rm). Also

taking the limit as m→∞, one gets an infinite cell decomposition of Grn(R∞)
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Proof. Basically we need to show that the boundary of e′(σ1, · · · , σn) gets mapped to images
of cells of lower dimension.

Let (v1, · · · , vn) ∈ e′(σ1, · · · , σn)− e′(σ1, · · · , σn). Now vi ∈ Hσi for all i ∈ 1, · · · , n. Also
since (v1, · · · , vn) /∈ e′(σ1, · · · , σn), there is some j ∈ {1, · · · , n} so that vj ∈ Hσj−1. Define

σ′i ≡ σi for all i 6= j and σ′j ≡ σj−1. Then vi ∈ Hσ′
i for all i = 1, · · · , n and hence (v1, · · · , vn)

maps to the image of e′(σ′i) which is the image of a lower dimensional cell.
We have that Grn(R∞) has the corresponding direct limit cell complex with the direct

limit topology. �

Definition 1.6. A partition of an integer r ≥ 0 is an unordered sequence of positive integers
i1, · · · , is which sum to r. The number of partitions of r is denoted by p(r).

e.g. The partitions of 4 are

1, 1, 1, 1, 1, 1, 2, 1, 3, , 2, 2, 4

and so p(4) = 5. Zero has 1 partition which is the vacuous partition.

Corollary 1.7. The number of r cells in Grn(Rm) is the number of partitions of r which
each number in the partition is ≤ m− n.

In particular, the number of r cells in Grn(R∞) is p(r).

Proof. The r cells correspond to sequences

1 ≤ σ1 < · · · < σn ≤ m
so that

∑n
i=1(σi−i) = r. Let l be the number of terms where σi−i = 0. Hence σl−l, · · · , σn−n

is our partition of r. Also since σi ≤ m− (n− i) for all i, we get that σi− i ≤ m−n for all i.
Conversely if 0 ≤ j1 ≤ js ≤ m − n is a partition of r so that ji ≤ m − n for all i then we

define σi ≡ i for all i ≤ n− s and σi ≡ ji+s−n for all i > n− s.
�


