1. CELL DECOMPOSITION OF GRASSMANNIAN.

We will first describe the cell structure. We have natural inclusions:
ROCR'c..-cR™ ! cR™
An n-plane X C R™ gives us a sequence of integers:
dim(X NR%) =0 < dim(X NR!) < ---dim(X NR™ 1) < dim(X NR™) = n.
Two consecutive integers in this sequence differ by at most one due to the fact that dim(R?) —

dim(R?~1) = 1. Hence the above sequence contains n-jumps of size 1.

Definition 1.1. A Schubert symbol is a sequence of n integers 0 < o1 < 02 < -+ < g, <
m. We define e(o) C Gr,(R™) to be the set of X C Gr,(R™) so that dim(X NR) =4 and
dim(X NR%~1) =4 — 1. In other words, o; is the point where the dimension ‘jumps’. The
closure e(0)) is called a Schubert variety.

We will show later that this is an open cell of dimension d(c) = Y_;" ;(0; — i). Define
H, = {(331,-" xp) €RF - oy, >0}.

This is the upper half plane. We have that X € e(o) if and only if it has a basis vy, -+ , v, €
R™ so that v; € H? for all i € {1,--- ,n}.

We can rescale the basis so that the last non-zero coordinate in v; is 1. This means that
X € e(o) if and only if the basis v1,--- ,v, for X can be described as the row space of the
n X m matrix:

Here the i-th row has 0; — 1 entries with anything in them followed by a 1 and then followed
by m — (0; — 1) zeros.

Lemma 1.2. For each X € e(0), there is a unique orthonormal basis
n
(i, ,vn) € HH‘”
i=1

of X.

Proof. Since dim(X NR7') = 1, there are only two unit vectors inside X NR?* and only one
inside X N H?'. Hence v; is unique.

Now dim(X N R?2) = 2. There are at most two unit vectors inside X N R?2 which are
orthogonal to v1. Hence there is only one such vector inside X N H?2. Hence vy is unique.

We now continue by induction giving us our result. O
Definition 1.3. Let ¢/(0) be the set of orthonormal n-frames (vy,--- ,v,) so that v; € H:.
@ (o) be the set of orthonormal n-frames (vy,--- ,v,) so that v; is in the closure of H7:.

Note that ¢/(0) = (o). The discussion above tells us that €’(o) is homeomorphic to e(o).
We have the following lemma:

n

Lemma 1.4. The set € (o) is a topologically closed cell of dimension d(c) = Y"1 (07 — 1)
whose interior maps homeomorphically to e(o). and
1



As a result, e(0) is an open cell of dimension d(o) and the map 9(€¢'(c)) — Gr,(R™) is
the gluing map for the boundary of the corresponding n-cell.

Proof. We proceed by induction on n. The set & (o1) is the set of vectors (21, -+ ,24,,0,- -+ ,0)
so that 37!, #7 = 11 and x,, > 0. This is a closed hemisphere of dimension oy — 1 and hence
is homeomorphic to the disk of dimension o1 — 1.

Now suppose € (o1, ,05) is homeomorphic to a disk of dimension ) " ,(o; — i) and
consider € (o1, -+ ,0,4+1). The key idea here is to construct a homeomorphism
—/ —/
B:e (o1, ,0n) X D —€(01, - ,0n,0n+1)

where D is a dimension 0,41 — (n + 1) ball.
Let

Typ: R™ — R™
be the unique rotation sending u to v and fixing all vectors orthogonal to u and v. This has
the following properties:

(1) T, is continuous in u,v and x and
(2) if u,v € R¥ then T, , () = z + a where a € R¥. In other words, it fixes + mod R*.

Define b; = e, for all i = 1,--- ,n (in other words, the o;th coordinate is 1 and all the
other coordinates are 0). So (by,---,b,) € €(o1, - ,0n). For each z = (z1,---,2,) €
e (o1, -+ ,0n), define

Ty :R" —R™, T, =Ty, 2,0 0T a-

Let
D={ueH" : vw-u=1, w-bj=0 Vi=1--- n}.

Here D is homeomorphic to a closed hemisphere inside H?»+! and hence is homeomorphic to
a ball of dimension 0,11 — (n + 1). Define:

B:€ (o1, ,0n) x D — (01, ,0n,0n41), Bx,u)=(2,Tu).

This map is well defined since:

o T fixes Ho~+1 and since

o (1, ,2pn), Ty, ... z,u) is an orthonormal basis as:
ij} 7xn(($1’ e 7:1:"7/)7 Twlv"' 7-777Lu) = <b17 e 7bn7 u)

which is orthonormal and T is an isometry.

Also $ is an invertible continuous map and so is a homeomorphism. Hence we are done by
induction.

A similar induction process tells us that the interior of (o) is the interior of € (o) for all
.

We now need to show that the interior of € (o) maps homeomorphically onto e(o) for all o.
The interior of e(oy, - ,0,) corresponds to orthonormal vectors vy, - - , v, so that v; € H
for all i = 1,--- ,n. These are precisely the elements in the interior of (o).

O

Theorem 1.5. The (') sets e(o1, -+ ,0y) for all n form a cell complex for Gr,, (R™). Also
taking the limit as m — oo, one gets an infinite cell decomposition of Gy, (R*)
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Proof. Basically we need to show that the boundary of € (o1, - ,0,) gets mapped to images
of cells of lower dimension.

Let (v1,--- ,vn) € € (01, ,00) — €' (01, ,0). Now v; € H for all i € 1,--- ,n. Also
since (v1,- -+ ,v,) & €' (01, ,05), there is some j € {1,--- ,n} so that v; € H% 1. Define
o} = o; for all i # j and a} =o0j—1. Thenwv; € H% foralli=1,--- ,n and hence (v1,++,vp)

maps to the image of € (o}) which is the image of a lower dimensional cell.
We have that Gr,(R*) has the corresponding direct limit cell complex with the direct
limit topology. O

Definition 1.6. A partition of an integer » > 0 is an unordered sequence of positive integers
i1, ,is which sum to r. The number of partitions of r is denoted by p(r).

e.g. The partitions of 4 are
1,1,1,1, 1,1,2, 1,3, ,2,2, 4
and so p(4) = 5. Zero has 1 partition which is the vacuous partition.
Corollary 1.7. The number of r cells in Gr,(R™) is the number of partitions of r which

each number in the partition is < m — n.
In particular, the number of r cells in Gr,(R*) is p(r).

Proof. The r cells correspond to sequences
1<o<---<o,<m

so that > 1" | (0;—%) = r. Let [ be the number of terms where 0;—i = 0. Hence o;—1,- -+ ,0p,—n
is our partition of r. Also since o; < m — (n — i) for all ¢, we get that o; — i < m —n for all i.
Conversely if 0 < j; < js < m — n is a partition of r so that j; < m — n for all ¢ then we

define g; =i for all t <n — s and 0y = jjys—n for all i > n — s.
O



