1. EXISTENCE AND UNIQUENESS OF STIEFEL WHITNEY CLASSES .

We will now prove the following theorem (which was stated earlier)

Theorem 1.1. To each topological vector bundle $\pi : E \longrightarrow B$ of rank n, there is a sequence of cohomology classes

$$w_i(E) \in H^i(B; \mathbb{Z}/2), \quad i = 0, 1, 2, \cdots$$

where $w_i(E)$ is called the *i*th Stiefel-Whitney class so that:

(Stiefel-1) rank axiom $w_0(E) = 1$ and $w_i(E) = 0$ for i > n.

- (Stiefel-2) Naturality: For any continuous map $f : B' \longrightarrow B$, we have that $w_i(f^*E) = f^*(w_i(E))$. Also isomorphic vector bundles have the same Stiefel-Whitney classes.
- (Stiefel-3) The Whitney Product Theorem: Let $\pi : E \longrightarrow B, \pi' : E' \longrightarrow B$ be fiber bundles over the same base B. Then

$$w_k(E \oplus E') = \sum_{i=0}^k w_i(E) \cup w_{k-i}(E').$$

(Stiefel-4) normalization axiom: $w_1(\mathcal{O}_{\mathbb{RP}^1}(-1)) \neq 0$ where $\mathcal{O}_{\mathbb{RP}^1}(-1)$ is the natural vector bundle on \mathbb{RP}^1 introduced earlier.

Proof. Existence: For each vector bundle $\pi : E \longrightarrow B$, let $F_E : B \longrightarrow Gr_n(\mathbb{R}^\infty)$ be the classifying map. Let $h_n : (\mathbb{R}\mathbb{P}^\infty)^n \longrightarrow Gr_n(\mathbb{R}^\infty)$ be the classifying map for the bundle $\bigoplus_{i=1}^n p_i^* \gamma_\infty^1$ where $p_i : (\mathbb{R}\mathbb{P}^\infty)^n \longrightarrow \mathbb{R}\mathbb{P}^\infty$ is the *i*th projection map. Recall that $H^*((\mathbb{R}\mathbb{P}^\infty)^n) = (\mathbb{Z}/2\mathbb{Z})[a_1, \cdots, a_n]$ and

$$h_n^*: H^*(Gr_n(\mathbb{R}^\infty); \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^*((\mathbb{R}\mathbb{P}^\infty)^n)$$

is injective with image equal to

$$(\mathbb{Z}/2\mathbb{Z})[\sigma_1,\cdots,\sigma_n]$$

where σ_i is the *i*th symmetric polynomial in a_1, \dots, a_n . We define $w_i(E) \equiv F_E^*(\sigma_i)$ for every vector bundle *E*. We need to show that $w_i(E)$ satisfies the axioms (Stiefel-1) - (Stiefel-4).

Rank Axiom: This is satisfied by definition.

Naturality: For any vector bundle $\pi : E \longrightarrow B$ and any map $f : B' \longrightarrow B$, we have that $F_{f^*E} = F_E \circ f$. Hence $w_i(f^*E) = f^*F_E^*\sigma_i = f^*w_i(E)$. Also if $\pi' : E' \longrightarrow B$ is isomorphic to $\pi : E \longrightarrow B$ then f_E is homotopic to $f_{E'}$ which means that $w_i(E) = f_E^*(\sigma_i) = f_{E'}^*(\sigma_i) = w_i(E')$.

The Whitney Product Theorem: Define $G \equiv Gr_n(\mathbb{R}^\infty)$, $G' \equiv Gr_{n'}(\mathbb{R}^\infty)$, $G'' \equiv Gr_{n+n'}(\mathbb{R}^\infty)$, $\gamma \equiv \gamma_{\infty}^n$, $\gamma' \equiv \gamma_{\infty}^{n'}$ and $\gamma_3 \equiv \gamma_{\infty}^{n+n'}$. Let

$$p:G\times G'\longrightarrow G, \quad p':G\times G'\longrightarrow G'$$

be the natural projection map. Let $F: G \times G' \longrightarrow G_3$ be the classifying map for $p^* \gamma \oplus p'^* \gamma'$. We have the following commutative diagram (up to homotopy):

The top horizontal map \widetilde{F} is the natural homeomorphism given by including $(\mathbb{RP}^{\infty})^n$ into the first *n* factors of $(\mathbb{RP}^{\infty})^{n+n'}$ and by including including $(\mathbb{RP}^{\infty})^{n'}$ into the last *n'* factors of $(\mathbb{RP}^{\infty})^{n+n'}$. We have

$$H^*((\mathbb{RP}^{\infty})^n; \mathbb{Z}/2/Z) = (\mathbb{Z}/2\mathbb{Z})[a, \cdots, a_n], \quad H^*((\mathbb{RP}^{\infty})^{n'}; \mathbb{Z}/2/Z) = (\mathbb{Z}/2\mathbb{Z})[a'_1, \cdots, a'_{n'}]$$

and

$$H^*((\mathbb{RP}^{\infty})^{n_3};\mathbb{Z}/2/Z) = (\mathbb{Z}/2\mathbb{Z})[a_1'',\cdots,a_{n+n'}']$$

Also

$$H^*(G; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})[\sigma_1, \cdots, \sigma_n], \quad H^*(G'; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})[\sigma'_1, \cdots, \sigma'_{n'}]$$

and

$$H^*(G_3; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})[\sigma_1'', \cdots, \sigma_{n+n'}']$$

where σ_i is the *i*th symmetric polynomial in a_i and σ'_i is the *i*th symmetric polynomial in a'_i and σ''_i is the *i*th symmetric polynomial in a''_i .

Then $\widetilde{F}^*(c_i) = a_i$ for $i \leq n$ and $\widetilde{F}^*(c_i) = a'_{i-n}$ for i > n. Since the maps

$$h_n^* : H^*(G; \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^*((\mathbb{RP}^\infty)^n; \mathbb{Z}/2)$$
$$h_{n'}^* : H^*(G'; \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^*((\mathbb{RP}^\infty)^{n'}; \mathbb{Z}/2)$$
$$h_{n+n'}^* : H^*(G_3; \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^*((\mathbb{RP}^\infty)^{n+n'}; \mathbb{Z}/2)$$

are injective with image given by the symmetric polynomials in a_i , a'_i and a''_i respectively, we get that

$$F^*(\sigma_i') = \sum_{j=1}^i \sigma_j \cup \sigma_{i-j}.$$
(1)

Now let $\pi : E \longrightarrow B$, $\pi' : E' \longrightarrow B$ be fiber bundles over the same base B of rank nand n' respectively. Then we have classifying maps F_E , $F_{E'}$ and $F_{E\oplus E'}$. Let $F_E \times F_{E'}$: $B \longrightarrow G_1 \times G_2$. Then $F \circ (F_E \times F_{E'})$ is homotopic to $F_{E\oplus E'}$ since G_3 is a classifying space. Combining this with formula (1) tells us that

$$w_i(E \oplus E') = F_{E \oplus E'}^*(\sigma_i'') = (F_E \times F_{E'})^* (\sum_{j=1}^{i} \sigma_j \cup \sigma_{i-j}') = \sum_{j=1}^{i} w_i(E) \cup w_i(E')$$

normalization axiom: This follows from the fact that the identity map $\mathbb{RP}^1 \longrightarrow \mathbb{RP}^1$ is the classifying map for γ_1^1 .

Uniqueness of Stiefel-Whitney Classes: Suppose we have Stiefel-Whitney classes $w_i(E)$ satisfying (Stiefel-1) - (Stiefel-4). Since every rank n bundle is the pullback of γ_{∞}^n , we only need to calculate $w_i(\gamma_{\infty}^n) \in H^i(Gr_n(\mathbb{R}^\infty))$. Also since the natural map

$$h_n^*: H^*(Gr_n(\mathbb{R}^\infty); \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^*((\mathbb{R}\mathbb{P}^\infty)^n)$$

is injective, and since $h_n^*(\gamma_\infty^n) = \bigoplus_{i=1}^n p_i^* \gamma_\infty^1$, it is in fact sufficient for us to calculate $w_i(\bigoplus_{i=1}^n p_i^* \gamma_\infty^1)$. By the Whitney sum formula and naturality applied to p_i , it is sufficient for us to calculate $w_i(\gamma_\infty^1) \in H^i(\mathbb{RP}^\infty)$ for all *i*. By the rank axiom $w_i(\gamma_\infty^1) = 0$ for i > 1 and $w_0(\gamma_\infty^1) = 1$. Also since the map $H^1(\mathbb{RP}^\infty) \leq H^1(\mathbb{RP}^1; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$ is an isomorphism and $\gamma_\infty^1|_{\mathbb{RP}^1} = \gamma_1^1$, we have by the normalization axiom that $w_1(\gamma_\infty^1) = 1$. Hence these classes are unique.

Corollary 1.2. We have that $w_n(E) = e(E; \mathbb{Z}/2)$.

Proof. This follows from naturality of the unoriented Euler class and $w_n(E)$ and from the fact that $e(\gamma_{\infty}^n; \mathbb{Z}/2) = \sigma_n = w_n(\gamma_{\infty}^n; \mathbb{Z}/2)$.

 $\mathbf{2}$