1. Existence and Uniqueness of Stiefel Whitney Classes .

We will now prove the following theorem (which was stated earlier)
Theorem 1.1. To each topological vector bundle $\pi: E \longrightarrow B$ of rank n, there is a sequence of cohomology classes

$$
w_{i}(E) \in H^{i}(B ; \mathbb{Z} / 2), \quad i=0,1,2, \cdots
$$

where $w_{i}(E)$ is called the i th Stiefel-Whitney class so that:
(Stiefel-1) rank axiom $w_{0}(E)=1$ and $w_{i}(E)=0$ for $i>n$.
(Stiefel-2) Naturality: For any continuous map $f: B^{\prime} \longrightarrow B$, we have that $w_{i}\left(f^{*} E\right)=$ $f^{*}\left(w_{i}(E)\right)$. Also isomorphic vector bundles have the same Stiefel-Whitney classes.
(Stiefel-3) The Whitney Product Theorem: Let $\pi: E \longrightarrow B, \pi^{\prime}: E^{\prime} \longrightarrow B$ be fiber bundles over the same base B. Then

$$
w_{k}\left(E \oplus E^{\prime}\right)=\sum_{i=0}^{k} w_{i}(E) \cup w_{k-i}\left(E^{\prime}\right) .
$$

(Stiefel-4) normalization axiom: $w_{1}\left(\mathcal{O}_{\mathbb{R P}^{1}}(-1)\right) \neq 0$ where $\mathcal{O}_{\mathbb{R P}^{1}}(-1)$ is the natural vector bundle on $\mathbb{R} \mathbb{P}^{1}$ introduced earlier.

Proof. Existence: For each vector bundle $\pi: E \longrightarrow B$, let $F_{E}: B \longrightarrow G r_{n}\left(\mathbb{R}^{\infty}\right)$ be the classifying map. Let $h_{n}:\left(\mathbb{R}^{\infty}\right)^{n} \longrightarrow G r_{n}\left(\mathbb{R}^{\infty}\right)$ be the classifying map for the bundle $\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}$ where $p_{i}:\left(\mathbb{R}^{\infty}\right)^{n} \longrightarrow \mathbb{R P}^{\infty}$ is the i th projection map. Recall that $H^{*}\left(\left(\mathbb{R}^{\infty}\right)^{n}\right)=$ $(\mathbb{Z} / 2 \mathbb{Z})\left[a_{1}, \cdots, a_{n}\right]$ and

$$
h_{n}^{*}: H^{*}\left(G r_{n}\left(\mathbb{R}^{\infty}\right) ; \mathbb{Z} / 2 \mathbb{Z}\right) \longrightarrow H^{*}\left(\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n}\right)
$$

is injective with image equal to

$$
(\mathbb{Z} / 2 \mathbb{Z})\left[\sigma_{1}, \cdots, \sigma_{n}\right]
$$

where σ_{i} is the i th symmetric polynomial in a_{1}, \cdots, a_{n}. We define $w_{i}(E) \equiv F_{E}^{*}\left(\sigma_{i}\right)$ for every vector bundle E. We need to show that $w_{i}(E)$ satisfies the axioms (Stiefel-1) - (Stiefel-4).

Rank Axiom: This is satisfied by definition.
Naturality: For any vector bundle $\pi: E \longrightarrow B$ and any map $f: B^{\prime} \longrightarrow B$, we have that $F_{f^{*} E}=F_{E} \circ f$. Hence $w_{i}\left(f^{*} E\right)=f^{*} F_{E}^{*} \sigma_{i}=f^{*} w_{i}(E)$. Also if $\pi^{\prime}: E^{\prime} \longrightarrow B$ is isomorphic to $\pi: E \longrightarrow B$ then f_{E} is homotopic to $f_{E^{\prime}}$ which means that $w_{i}(E)=f_{E}^{*}\left(\sigma_{i}\right)=f_{E^{\prime}}^{*}\left(\sigma_{i}\right)=$ $w_{i}\left(E^{\prime}\right)$.

The Whitney Product Theorem: Define $G \equiv G r_{n}\left(\mathbb{R}^{\infty}\right), G^{\prime} \equiv G r_{n^{\prime}}\left(\mathbb{R}^{\infty}\right), G^{\prime \prime} \equiv G r_{n+n^{\prime}}\left(\mathbb{R}^{\infty}\right)$, $\gamma \equiv \gamma_{\infty}^{n}, \gamma^{\prime} \equiv \gamma_{\infty}^{n^{\prime}}$ and $\gamma_{3} \equiv \gamma_{\infty}^{n+n^{\prime}}$. Let

$$
p: G \times G^{\prime} \longrightarrow G, \quad p^{\prime}: G \times G^{\prime} \longrightarrow G^{\prime}
$$

be the natural projection map. Let $F: G \times G^{\prime} \longrightarrow G_{3}$ be the classifying map for $p^{*} \gamma \oplus p^{\prime *} \gamma^{\prime}$. We have the following commutative diagram (up to homotopy):

The top horizontal map \widetilde{F} is the natural homeomorphism given by including $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n}$ into the first n factors of $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n+n^{\prime}}$ and by including including $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n^{\prime}}$ into the last n^{\prime} factors of $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n+n^{\prime}}$. We have

$$
H^{*}\left(\left(\mathbb{R P}^{\infty}\right)^{n} ; \mathbb{Z} / 2 / Z\right)=(\mathbb{Z} / 2 \mathbb{Z})\left[a, \cdots, a_{n}\right], \quad H^{*}\left(\left(\mathbb{R P}^{\infty}\right)^{n^{\prime}} ; \mathbb{Z} / 2 / Z\right)=(\mathbb{Z} / 2 \mathbb{Z})\left[a_{1}^{\prime}, \cdots, a_{n^{\prime}}^{\prime}\right]
$$

and

$$
H^{*}\left(\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n_{3}} ; \mathbb{Z} / 2 / Z\right)=(\mathbb{Z} / 2 \mathbb{Z})\left[a_{1}^{\prime \prime}, \cdots, a_{n+n^{\prime}}^{\prime \prime}\right]
$$

Also

$$
H^{*}(G ; \mathbb{Z} / 2 \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})\left[\sigma_{1}, \cdots, \sigma_{n}\right], \quad H^{*}\left(G^{\prime} ; \mathbb{Z} / 2 \mathbb{Z}\right)=(\mathbb{Z} / 2 \mathbb{Z})\left[\sigma_{1}^{\prime}, \cdots, \sigma_{n^{\prime}}^{\prime}\right]
$$

and

$$
H^{*}\left(G_{3} ; \mathbb{Z} / 2 \mathbb{Z}\right)=(\mathbb{Z} / 2 \mathbb{Z})\left[\sigma_{1}^{\prime \prime}, \cdots, \sigma_{n+n^{\prime}}^{\prime \prime}\right]
$$

where σ_{i} is the i th symmetric polynomial in a_{i} and σ_{i}^{\prime} is the i th symmetric polynomial in a_{i}^{\prime} and $\sigma_{i}^{\prime \prime}$ is the i th symmetric polynomial in $a_{i}^{\prime \prime}$.

Then $\widetilde{F}^{*}\left(c_{i}\right)=a_{i}$ for $i \leq n$ and $\widetilde{F}^{*}\left(c_{i}\right)=a_{i-n}^{\prime}$ for $i>n$. Since the maps

$$
\begin{gathered}
h_{n}^{*}: H^{*}(G ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{*}\left(\left(\mathbb{R P}^{\infty}\right)^{n} ; \mathbb{Z} / 2\right) \\
h_{n^{\prime}}^{*}: H^{*}\left(G^{\prime} ; \mathbb{Z} / 2 \mathbb{Z}\right) \longrightarrow H^{*}\left(\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n^{\prime}} ; \mathbb{Z} / 2\right) \\
h_{n+n^{\prime}}^{*}: H^{*}\left(G_{3} ; \mathbb{Z} / 2 \mathbb{Z}\right) \longrightarrow H^{*}\left(\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n+n^{\prime}} ; \mathbb{Z} / 2\right)
\end{gathered}
$$

are injective with image given by the symmetric polynomials in a_{i}, a_{i}^{\prime} and $a_{i}^{\prime \prime}$ respectively, we get that

$$
\begin{equation*}
F^{*}\left(\sigma_{i}^{\prime}\right)=\sum_{j=1}^{i} \sigma_{j} \cup \sigma_{i-j} \tag{1}
\end{equation*}
$$

Now let $\pi: E \longrightarrow B, \pi^{\prime}: E^{\prime} \longrightarrow B$ be fiber bundles over the same base B of rank n and n^{\prime} respectively. Then we have classifying maps $F_{E}, F_{E^{\prime}}$ and $F_{E \oplus E^{\prime}}$. Let $F_{E} \times F_{E^{\prime}}$: $B \longrightarrow G_{1} \times G_{2}$. Then $F \circ\left(F_{E} \times F_{E^{\prime}}\right)$ is homotopic to $F_{E \oplus E^{\prime}}$ since G_{3} is a classifying space. Combining this with formula (1) tells us that

$$
w_{i}\left(E \oplus E^{\prime}\right)=F_{E \oplus E^{\prime}}^{*}\left(\sigma_{i}^{\prime \prime}\right)=\left(F_{E} \times F_{E^{\prime}}\right)^{*}\left(\sum_{j=1} \sigma_{j} \cup \sigma_{i-j}^{\prime}\right)=\sum_{j=1}^{i} w_{i}(E) \cup w_{i}\left(E^{\prime}\right)
$$

normalization axiom: This follows from the fact that the identity map $\mathbb{R} \mathbb{P}^{1} \longrightarrow \mathbb{R P}^{1}$ is the classifying map for γ_{1}^{1}.

Uniqueness of Stiefel-Whitney Classes: Suppose we have Stiefel-Whitney classes $w_{i}(E)$ satisfying (Stiefel-1) - (Stiefel-4). Since every rank n bundle is the pullback of γ_{∞}^{n}, we only need to calculate $w_{i}\left(\gamma_{\infty}^{n}\right) \in H^{i}\left(G r_{n}\left(\mathbb{R}^{\infty}\right)\right)$. Also since the natural map

$$
h_{n}^{*}: H^{*}\left(G r_{n}\left(\mathbb{R}^{\infty}\right) ; \mathbb{Z} / 2 \mathbb{Z}\right) \longrightarrow H^{*}\left(\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{n}\right)
$$

is injective, and since $h_{n}^{*}\left(\gamma_{\infty}^{n}\right)=\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}$, it is in fact sufficient for us to calculate $w_{i}\left(\oplus_{i=1}^{n} p_{i}^{*} \gamma_{\infty}^{1}\right)$. By the Whitney sum formula and naturality applied to p_{i}, it is sufficient for us to calculate $w_{i}\left(\gamma_{\infty}^{1}\right) \in H^{i}\left(\mathbb{R P}^{\infty}\right)$ for all i. By the rank axiom $w_{i}\left(\gamma_{\infty}^{1}\right)=0$ for $i>1$ and $w_{0}\left(\gamma_{\infty}^{1}\right)=1$. Also since the map $H^{1}\left(\mathbb{R} \mathbb{P}^{\infty}\right) \leq H^{1}\left(\mathbb{R} \mathbb{P}^{1} ; \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}$ is an isomorphism and $\left.\gamma_{\infty}^{1}\right|_{\mathbb{R} \mathbb{P}^{1}}=\gamma_{1}^{1}$, we have by the normalization axiom that $w_{1}\left(\gamma_{\infty}^{1}\right)=1$. Hence these classes are unique.

Corollary 1.2. We have that $w_{n}(E)=e(E ; \mathbb{Z} / 2)$.
Proof. This follows from naturality of the unoriented Euler class and $w_{n}(E)$ and from the fact that $e\left(\gamma_{\infty}^{n} ; \mathbb{Z} / 2\right)=\sigma_{n}=w_{n}\left(\gamma_{\infty}^{n} ; \mathbb{Z} / 2\right)$.

