
1. Existence and Uniqueness of Stiefel Whitney Classes .

We will now prove the following theorem (which was stated earlier)

Theorem 1.1. To each topological vector bundle π : E −→ B of rank n, there is a sequence
of cohomology classes

wi(E) ∈ H i(B;Z/2), i = 0, 1, 2, · · ·
where wi(E) is called the ith Stiefel-Whitney class so that:

(Stiefel-1) rank axiom w0(E) = 1 and wi(E) = 0 for i > n.
(Stiefel-2) Naturality: For any continuous map f : B′ −→ B, we have that wi(f

∗E) =
f∗(wi(E)). Also isomorphic vector bundles have the same Stiefel-Whitney classes.

(Stiefel-3) The Whitney Product Theorem: Let π : E −→ B, π′ : E′ −→ B be fiber bundles
over the same base B. Then

wk(E ⊕ E′) =
k∑

i=0

wi(E) ∪ wk−i(E
′).

(Stiefel-4) normalization axiom: w1(ORP1(−1)) 6= 0 where ORP1(−1) is the natural vector
bundle on RP1 introduced earlier.

Proof. Existence: For each vector bundle π : E −→ B, let FE : B −→ Grn(R∞) be the
classifying map. Let hn : (RP∞)n −→ Grn(R∞) be the classifying map for the bundle
⊕n

i=1p
∗
i γ

1
∞ where pi : (RP∞)n −→ RP∞ is the ith projection map. Recall that H∗((RP∞)n) =

(Z/2Z)[a1, · · · , an] and

h∗n : H∗(Grn(R∞);Z/2Z) −→ H∗((RP∞)n)

is injective with image equal to
(Z/2Z)[σ1, · · · , σn]

where σi is the ith symmetric polynomial in a1, · · · , an. We define wi(E) ≡ F ∗E(σi) for every
vector bundle E. We need to show that wi(E) satisfies the axioms (Stiefel-1) - (Stiefel-4).

Rank Axiom: This is satisfied by definition.
Naturality: For any vector bundle π : E −→ B and any map f : B′ −→ B, we have that

Ff∗E = FE ◦ f . Hence wi(f
∗E) = f∗F ∗Eσi = f∗wi(E). Also if π′ : E′ −→ B is isomorphic

to π : E −→ B then fE is homotopic to fE′ which means that wi(E) = f∗E(σi) = f∗E′(σi) =
wi(E

′).
The Whitney Product Theorem: DefineG ≡ Grn(R∞), G′ ≡ Grn′(R∞), G′′ ≡ Grn+n′(R∞),

γ ≡ γn∞, γ′ ≡ γn′∞ and γ3 ≡ γn+n′
∞ . Let

p : G×G′ −→ G, p′ : G×G′ −→ G′

be the natural projection map. Let F : G×G′ −→ G3 be the classifying map for p∗γ⊕ p′∗γ′.
We have the following commutative diagram (up to homotopy):

(RP∞)n × (RP∞)n
′

(RP∞)n+n′

G×G′ G3

hn × hn′ hn+n′

F̃

F

1



2

The top horizontal map F̃ is the natural homeomorphism given by including (RP∞)n into

the first n factors of (RP∞)n+n′ and by including including (RP∞)n
′

into the last n′ factors

of (RP∞)n+n′ . We have

H∗((RP∞)n;Z/2/Z) = (Z/2Z)[a, · · · , an], H∗((RP∞)n
′
;Z/2/Z) = (Z/2Z)[a′1, · · · , a′n′ ]

and
H∗((RP∞)n3 ;Z/2/Z) = (Z/2Z)[a′′1, · · · , a′′n+n′ ].

Also
H∗(G;Z/2Z) = (Z/2Z)[σ1, · · · , σn], H∗(G′;Z/2Z) = (Z/2Z)[σ′1, · · · , σ′n′ ]

and
H∗(G3;Z/2Z) = (Z/2Z)[σ′′1 , · · · , σ′′n+n′ ]

where σi is the ith symmetric polynomial in ai and σ′i is the ith symmetric polynomial in a′i
and σ′′i is the ith symmetric polynomial in a′′i .

Then F̃ ∗(ci) = ai for i ≤ n and F̃ ∗(ci) = a′i−n for i > n. Since the maps

h∗n : H∗(G;Z/2Z) −→ H∗((RP∞)n;Z/2)

h∗n′ : H∗(G′;Z/2Z) −→ H∗((RP∞)n
′
;Z/2)

h∗n+n′ : H∗(G3;Z/2Z) −→ H∗((RP∞)n+n′ ;Z/2)

are injective with image given by the symmetric polynomials in ai, a
′
i and a′′i respectively, we

get that

F ∗(σ′i) =

i∑
j=1

σj ∪ σi−j . (1)

Now let π : E −→ B, π′ : E′ −→ B be fiber bundles over the same base B of rank n
and n′ respectively. Then we have classifying maps FE , FE′ and FE⊕E′ . Let FE × FE′ :
B −→ G1 ×G2. Then F ◦ (FE × FE′) is homotopic to FE⊕E′ since G3 is a classifying space.
Combining this with formula (1) tells us that

wi(E ⊕ E′) = F ∗E⊕E′(σ
′′
i ) = (FE × FE′)

∗(
∑
j=1

σj ∪ σ′i−j) =
i∑

j=1

wi(E) ∪ wi(E
′).

normalization axiom: This follows from the fact that the identity map RP1 −→ RP1 is the
classifying map for γ11 .

Uniqueness of Stiefel-Whitney Classes: Suppose we have Stiefel-Whitney classes wi(E)
satisfying (Stiefel-1) - (Stiefel-4). Since every rank n bundle is the pullback of γn∞, we only
need to calculate wi(γ

n
∞) ∈ H i(Grn(R∞)). Also since the natural map

h∗n : H∗(Grn(R∞);Z/2Z) −→ H∗((RP∞)n)

is injective, and since h∗n(γn∞) = ⊕n
i=1p

∗
i γ

1
∞, it is in fact sufficient for us to calculate wi(⊕n

i=1p
∗
i γ

1
∞).

By the Whitney sum formula and naturality applied to pi, it is sufficient for us to calculate
wi(γ

1
∞) ∈ H i(RP∞) for all i. By the rank axiom wi(γ

1
∞) = 0 for i > 1 and w0(γ

1
∞) = 1. Also

since the map H1(RP∞) ≤ H1(RP1;Z/2Z) = Z/2Z is an isomorphism and γ1∞|RP1 = γ11 , we
have by the normalization axiom that w1(γ

1
∞) = 1. Hence these classes are unique. �

Corollary 1.2. We have that wn(E) = e(E;Z/2).

Proof. This follows from naturality of the unoriented Euler class and wn(E) and from the
fact that e(γn∞;Z/2) = σn = wn(γn∞;Z/2). �


