1. Oriented Euler Class.

The problem with Stiefel-Whitney classes is that they are only classes in cohomology with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients. Sometimes more information can be obtained if we have classes with \mathbb{Z} coefficients.

Definition 1.1. A vector bundle is orientable if its structure group can be reduced to invertible matrices with positive determinant $G L^{+}(n, \mathbb{R}) \subset G L(n, \mathbb{R})$. Equivalently, a vector bundle $\pi: E \longrightarrow B$ of rank n is orientable if its highest wedge power $\wedge^{n} E$ is a trivial line bundle. An orientation is a choice of trivialization of this line bundle up to homotopy I.e. a choice of isomorphism $\wedge^{n} E \cong B \times \mathbb{R}$ up to homotopy.

A vector bundle $\pi: E \longrightarrow B$ is oriented if it has a fixed choice of orientation $\tau: \wedge^{n} E \longrightarrow$ $B \times \mathbb{R}$.

If B is connected then there are only two choices of isomorphism up to homotopy since automorphisms of $B \times \mathbb{R}$ correspond to functions $f: B \longrightarrow \mathbb{R}-0$ where f corresponds to the automorphism

$$
B \times \mathbb{R} \longrightarrow B \times \mathbb{R}, \quad(b, t) \longrightarrow(b, f(b) t)
$$

We can also define an orientation in the following way: Recall that $H_{n}(V, V-0 ; \mathbb{Z})=\mathbb{Z}$ for any vector space V of dimension n.

Definition 1.2. A homological orientation on a rank n vector bundle $\pi: E \longrightarrow B$ consists of class $\mu_{x} \in H_{n}\left(\left.E\right|_{x},\left.E\right|_{x}-0 ; \mathbb{Z}\right)$ for each $x \in B$ so that for each $x \in B$ there is a neighborhood $N_{x} \ni x$ of x in B and a class $\mu_{N_{x}} \in H_{n}\left(\left.E\right|_{N_{x}},\left.E\right|_{N_{x}}-N_{x} ; \mathbb{Z}\right)$ so that the restriction of $\mu_{N_{x}}$ to $H_{n}\left(\left.E\right|_{y},\left.E\right|_{y}-0 ; \mathbb{Z}\right)$ is μ_{y} for all $y \in B$.

Lemma 1.3. There is a $1-1$ correspondence between homological orientations and orientations.

As a result we will just use the word orientation instead of homological orientation.
Proof. We will use the following facts:
Fact 1: Let $\mu \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}-0 ; \mathbb{Z}\right)$ be a generator of this rank 1 free abelian group. If A is a linear map with positive determinant then $A_{*}(\mu)=\mu$.

Fact 2: If V is a vector space with a choice of linear isomorphism $\wedge^{n} V \longrightarrow \mathbb{R}=\wedge^{n} \mathbb{R}^{n}$. Then any two linear maps $B_{1}, B_{2}: V \longrightarrow \mathbb{R}^{n}$ inducing the above isomorphism up to homotopy give the same isomorphism $H_{n}(V, V-0 ; \mathbb{Z}) \longrightarrow H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0 ; \mathbb{Z}\right)$.

Therefore fact 1 and fact 2 tells us that a choice of trivialization $\wedge^{n} V \longrightarrow \mathbb{R}$ give us a canonical choice of generator $\mu \in H_{n}(V, V-0 ; \mathbb{Z})$.

Suppose that $\pi: E \longrightarrow B$ is oriented. Then we have a a choice of trivialization τ : $\wedge^{n} E \longrightarrow B \times \mathbb{R}$. The above discussion tells us that τ induces a canonical choice of generator. $\mu_{x} \in H_{n}\left(\left.E\right|_{x} ;\left.E\right|_{x}-0 ; \mathbb{Z}\right)$ Now we define N_{x} to be a neighborhood of x so that $\left.E\right|_{N_{x}}=N_{x} \times \mathbb{R}^{n}$. Then $\left.\mu_{N} \in H_{n}\left(N_{x} \times \mathbb{R}^{n}, N_{x} \times\left(\mathbb{R}^{n}-0\right)\right) ; \mathbb{Z}\right)=\mathbb{Z}$ is the unique class restricting to μ_{x}. This restricts to μ_{y} for each $y \in N_{x}$ be Fact 1 and Fact 2.

Conversely if $\pi: E \longrightarrow B$ is homologically oriented. Then the choice of μ_{x} give us local sections $\sigma_{N_{x}}$ on small neighborhoods N_{x} of B with the property that $\sigma_{N_{x}}$ and $\sigma_{N_{y}}$ are positive multiples of each other. Hence we can patch these sections together to get a nowhere zero section of $\wedge^{n} E$. Hence $\pi: E \longrightarrow B$ is orientable.

We also have an oriented version of the Thom Isomorphism theorem:

Theorem 1.4. (Thom Isomorphism Theorem) Let $\pi: E \longrightarrow B$ be an oriented vector bundle. Then there is a class $\widetilde{e}(E) \in H^{*}(E, E-B ; \mathbb{Z})$ so that the map

$$
H^{*}(B ; \mathbb{Z}) \longrightarrow H^{*}(E ; \mathbb{Z}), \quad \alpha \longrightarrow \pi^{*} \alpha \cup \widetilde{e}(E)
$$

is an isomorphism.
Corollary 1.5. If $\pi: E \longrightarrow B$ is oriented then there is a class $\mu_{B} \in H_{n}(E ; E-B ; \mathbb{Z})$ whose restriction to $H_{n}\left(\left.E\right|_{x},\left.E\right|_{x}-0 ; \mathbb{Z}\right)$ is μ_{x} for each $x \in B$.

This theorem follows from the following Theorem:
Theorem 1.6. Let $\pi: E \longrightarrow B$ be an oriented vector bundle. Choose an identification of the fiber F with \mathbb{R}^{n} so that its orientation is preserved (i.e. the map $\wedge^{n} \mathbb{R}^{n}=\mathbb{R}=\wedge^{n} F$ corresponds to our orientation).

Then there is a class $\widetilde{e}(E) \in H .(E, E-B ; \mathbb{Z})$ so that the restriction of $\widetilde{e}(E)$ to $H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\right.$ $0 ; \mathbb{Z}) \cong \mathbb{Z}$ is 1 where 1 corresponds to the boundary of the linear $n+1$-simplex in \mathbb{R}^{n} with vertices at the basis vectors e_{1}, \cdots, e_{n} and at $(-1, \cdots,-1)$.

Also this class is unique by the Thom isomorphism theorem.
Definition 1.7. The class $\widetilde{e}(E)$ is called the fundamental class of E.
The Thom Isomorphism Theorem follows from the above theorem combined with the Leray-Hirsch theorem. But..... The Leray-Hirsch theorem only works when one has coeffients over a field F. Hence the map

$$
H^{*}(B ; \mathbb{K}) \longrightarrow H^{*}(E ; \mathbb{K}), \quad \alpha \longrightarrow \pi^{*} \alpha \cup \widetilde{e}(E)
$$

is an isomorphism over any field \mathbb{K}. But this is enough to show that

$$
H^{*}(B ; \mathbb{Z}) \longrightarrow H^{*}(E ; \mathbb{Z}), \quad \alpha \longrightarrow \pi^{*} \alpha \cup \widetilde{e}(E)
$$

is an isomorphism.
Sketch of the proof of Theorem 1.6. The proof of this theorem first uses Mayor-Vietoris and the five lemma to show that there is a class $\widetilde{e}(E)$ whose restriction to any fiber $H^{*}\left(F, F_{0} ; \mathbb{Z}\right)=$ $H^{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0 ; \mathbb{Z}\right) \cong \mathbb{Z}$ is 1 . This is where orientability is needed. The reason is that there are two possible isomorphisms $H^{*}\left(F, F_{0} ; \mathbb{Z}\right) \cong \mathbb{Z}$ where one is minus one times the other. The choice of orientation fixes such an isomorphism since it identifies $\wedge^{n} F$ with $\wedge^{n} \mathbb{R}$ in a canonical way.

We will not give a detailed proof of the Thom isomorphism here as it is essentially the same as the non-oriented Thom Isomorphism theorem.
Definition 1.8. The Euler Class of a rank n oriented vector bundle $\pi: E \longrightarrow B$ is the class $e(E) \in H^{n}(B ; \mathbb{Z})$ given by the image of $\widetilde{e}(E)$ under the map

$$
H^{n}\left(E ; E_{0} ; \mathbb{Z}\right) \longrightarrow H^{n}(E ; \mathbb{Z}) \longrightarrow H^{n}(B ; \mathbb{Z})
$$

where the last morphism is the zero section inclusion map.
Note that the image of $e(E)$ inside $H^{*}(B ; \mathbb{Z} / 2 \mathbb{Z})$ is the unoriented Euler class $e(E ; \mathbb{Z} / 2 \mathbb{Z})$.
Lemma 1.9. $e\left(B \times \mathbb{R}^{n}\right)=0$.
Exercise.
We have the following corollary of Theorem 1.6:
Corollary 1.10. There is a $1-1$ correspondence between orientations on E and classes $\widetilde{e}(E)$ satisfying the properties of Theorem 1.6.

To prove this corollary one needs to show that $\widetilde{e}(E)$ is unique. This follows from the Thom isomorphism theorem.

Theorem 1.11. Let $\pi: E \longrightarrow B, \pi: E^{\prime} \longrightarrow B$ be vector bundles. Then $e\left(E \oplus E^{\prime}\right)=$ $e(E) \cup e\left(E^{\prime}\right)$.

Proof. Consider the bundle

$$
E \times E^{\prime} \longrightarrow B \times B, \quad\left(e, e^{\prime}\right) \longrightarrow\left(\pi(e), \pi^{\prime}\left(e^{\prime}\right)\right)
$$

Let $P: E \times E^{\prime} \longrightarrow E, P^{\prime}: E \times E^{\prime} \longrightarrow E^{\prime} p: B \times B^{\prime} \longrightarrow B, p^{\prime}: B \times B^{\prime} \longrightarrow B^{\prime}$ be the natural projection maps.

Then $\widetilde{e}\left(E \times E^{\prime}\right)=P^{*} \widetilde{e}(E) \cup P^{\prime *} \widetilde{e}\left(E^{\prime}\right)$. Hence $e\left(E \times E^{\prime}\right)=p^{*} e(E) \cup P^{\prime *} e\left(E^{\prime}\right)$.
Let

$$
\Delta: B \longrightarrow B \times B, \quad \Delta(x)=(x, x)
$$

be the diagonal inclusion map. Then since $E \oplus E^{\prime} \cong \Delta^{*}\left(E \times E^{\prime}\right)$, we have that $e\left(E \oplus E^{\prime}\right)=$ $\Delta^{*}\left(p^{*} e(E) \cup P^{\prime *} e\left(E^{\prime}\right)\right)=e(E) \cup e\left(E^{\prime}\right)$.

Corollary 1.12. Suppose that the vector bundle $\pi: E \longrightarrow B$ admits a section $s: B \longrightarrow E$ so that $s(x) \neq 0$ for all $x \in B$. Then $e(E)=0$.

Proof. Let $L \subset E$ be the rank 1 vector subbundle whose fiber at $x \in B$ consists of the set of vectors of the form $c s(x)$ where $c \in \mathbb{R}$. The L admits a section s and hence L is trivial. Therefore $E \cong \mathbb{R} \oplus(E / L)$. Hence $e(E)=e(\mathbb{R}) \cup e(E / L)=0 \cup e(E / L)=0$.

