1. ORIENTED EULER CLASS.

The problem with Stiefel-Whitney classes is that they are only classes in cohomology with
Z]2Z coefficients. Sometimes more information can be obtained if we have classes with Z
coefficients.

Definition 1.1. A vector bundle is orientable if its structure group can be reduced to
invertible matrices with positive determinant GL*(n,R) C GL(n,R). Equivalently, a vector
bundle 7 : E — B of rank n is orientable if its highest wedge power A"E is a trivial line
bundle. An orientation is a choice of trivialization of this line bundle up to homotopy I.e.
a choice of isomorphism A"E =2 B x R up to homotopy.

A vector bundle 7 : E — B is oriented if it has a fixed choice of orientation 7 : A" F —
B x R.

If B is connected then there are only two choices of isomorphism up to homotopy since
automorphisms of B X R correspond to functions f : B — R — 0 where f corresponds to
the automorphism

BxR—sBxR, (bt)—s (b fb)).

We can also define an orientation in the following way: Recall that H,(V,V —0;Z) = Z
for any vector space V' of dimension n.

Definition 1.2. A homological orientation on a rank n vector bundle = : £ — B
consists of class u, € H,(E|;, E|, — 0;Z) for each x € B so that for each © € B there is
a neighborhood N, o z of x in B and a class uyn, € Hn(F|n,, E|n, — Nz;Z) so that the
restriction of uy, to Hy(E|y, E|ly — 0;7Z) is p, for all y € B.

Lemma 1.3. There is a 1 — 1 correspondence between homological orientations and orien-
tations.

As a result we will just use the word orientation instead of homological orientation.

Proof. We will use the following facts:

Fact 1: Let p € H,(R™, R — 0;Z) be a generator of this rank 1 free abelian group. If A is
a linear map with positive determinant then A.(u) = p.

Fact 2: If V is a vector space with a choice of linear isomorphism A"V — R = A"R".
Then any two linear maps By, By : V. — R"” inducing the above isomorphism up to homotopy
give the same isomorphism H,(V,V —0;Z) — H,(R",R"™ — 0;Z).

Therefore fact 1 and fact 2 tells us that a choice of trivialization A"V — R give us a
canonical choice of generator € H,(V,V — 0;Z).

Suppose that m : E — B is oriented. Then we have a a choice of trivialization 7 :
A"E — B x R. The above discussion tells us that 7 induces a canonical choice of generator.
ty € Hy(E|y; Elz—0;Z) Now we define N, to be a neighborhood of x so that E|y, = N, xR™.
Then uy € Hy(N; x R, N, x (R™ —0));Z) = Z is the unique class restricting to p,. This
restricts to p, for each y € N, be Fact 1 and Fact 2.

Conversely if 7 : E — B is homologically oriented. Then the choice of u, give us local
sections o, on small neighborhoods N, of B with the property that oy, and oy, are positive
multiples of each other. Hence we can patch these sections together to get a nowhere zero
section of A"E. Hence w : E — B is orientable. g

We also have an oriented version of the Thom Isomorphism theorem:
1



2

Theorem 1.4. (Thom Isomorphism Theorem) Let 7 : E — B be an oriented vector bundle.
Then there is a class e(E) € H*(E, E — B;Z) so that the map

H*(B;Z) — H*(E;Z), o — m"aUe(E)
is an isomorphism.

Corollary 1.5. If 7 : E — B is oriented then there is a class up € H,(F; E — B;Z) whose
restriction to Hy(E|g, Elz — 0;Z) is p, for each xz € B.

This theorem follows from the following Theorem:

Theorem 1.6. Let 7 : £ — B be an oriented vector bundle. Choose an identification of
the fiber F' with R™ so that its orientation is preserved (i.e. the map A"R" = R = A"F
corresponds to our orientation).

Then there is a class €(E) € H.(E, E— B;Z) so that the restriction of e(E) to H*(R",R" —
0;Z) = Z is 1 where 1 corresponds to the boundary of the linear n 4 1-simplex in R™ with
vertices at the basis vectors ey, -+ ,e, and at (—1,---,—1).

Also this class is unique by the Thom isomorphism theorem.

Definition 1.7. The class ¢(F) is called the fundamental class of F.

The Thom Isomorphism Theorem follows from the above theorem combined with the
Leray-Hirsch theorem. But..... The Leray-Hirsch theorem only works when one has coeflients
over a field F'. Hence the map

H*(B;K) — H*(E;K), o — m*aUe(E)
is an isomorphism over any field K. But this is enough to show that
H*(B;Z) — H*(E;Z), a— m"aUe(E)

is an isomorphism.

Sketch of the proof of Theorem 1.6. The proof of this theorem first uses Mayor-Vietoris and
the five lemma to show that there is a class €(E) whose restriction to any fiber H*(F, Fy; Z) =
H*(R™",R™ — 0;Z) =2 Z is 1. This is where orientability is needed. The reason is that there
are two possible isomorphisms H*(F, Fy;Z) = 7 where one is minus one times the other.
The choice of orientation fixes such an isomorphism since it identifies A F with A"R in a
canonical way.

We will not give a detailed proof of the Thom isomorphism here as it is essentially the
same as the non-oriented Thom Isomorphism theorem.

Definition 1.8. The Euler Class of a rank n oriented vector bundle 7 : £ — B is the
class e(E) € H"(B;Z) given by the image of €(F) under the map

H"(E;Ey;Z) — H"(E;Z) — H"(B;7Z)
where the last morphism is the zero section inclusion map.
Note that the image of e(FE) inside H*(B;Z/27) is the unoriented Euler class e(F;Z/27).
Lemma 1.9. ¢(B x R") = 0.

Exercise.

We have the following corollary of Theorem 1.6:

Corollary 1.10. There is a 1 —1 correspondence between orientations on E and classes e(E)
satisfying the properties of Theorem 1.6.
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To prove this corollary one needs to show that €(E) is unique. This follows from the Thom
isomorphism theorem.

Theorem 1.11. Let 7 : E — B, m : E/ — B be vector bundles. Then e(E & E’) =
e(E)Ue(E").

Proof. Consider the bundle
ExE — Bx B, (ec¢€)— (n(e), ().

Let P:EXE — E,PP:EXE — E'p: BxB' — B, p': Bx B’ — B’ be the natural
projection maps.
Then ¢(E x E') = P*¢(E) U P™¢(E’). Hence e(E x E') = p*e(E) U P""e(E").
Let
A:B— BxB, Ax)=(zx)
be the diagonal inclusion map. Then since E @ E' = A*(E x E'), we have that e(E @ E’)
A*(p*e(E) U P™e(E")) = e(E) Ue(E").

ol

Corollary 1.12. Suppose that the vector bundle 7 : E — B admits a section s : B — FE
so that s(x) # 0 for all x € B. Then e(F) = 0.

Proof. Let L C E be the rank 1 vector subbundle whose fiber at x € B consists of the set
of vectors of the form cs(z) where ¢ € R. The L admits a section s and hence L is trivial.
Therefore E = R & (E/L). Hence e(E) =e(R)Ue(E/L)=0Ue(E/L) = 0. O



