
1. Oriented Euler Class.

The problem with Stiefel-Whitney classes is that they are only classes in cohomology with
Z/2Z coefficients. Sometimes more information can be obtained if we have classes with Z
coefficients.

Definition 1.1. A vector bundle is orientable if its structure group can be reduced to
invertible matrices with positive determinant GL+(n,R) ⊂ GL(n,R). Equivalently, a vector
bundle π : E −→ B of rank n is orientable if its highest wedge power ∧nE is a trivial line
bundle. An orientation is a choice of trivialization of this line bundle up to homotopy I.e.
a choice of isomorphism ∧nE ∼= B × R up to homotopy.

A vector bundle π : E −→ B is oriented if it has a fixed choice of orientation τ : ∧nE −→
B × R.

If B is connected then there are only two choices of isomorphism up to homotopy since
automorphisms of B × R correspond to functions f : B −→ R − 0 where f corresponds to
the automorphism

B × R −→ B × R, (b, t) −→ (b, f(b)t).

We can also define an orientation in the following way: Recall that Hn(V, V − 0;Z) = Z
for any vector space V of dimension n.

Definition 1.2. A homological orientation on a rank n vector bundle π : E −→ B
consists of class µx ∈ Hn(E|x, E|x − 0;Z) for each x ∈ B so that for each x ∈ B there is
a neighborhood Nx 3 x of x in B and a class µNx ∈ Hn(E|Nx , E|Nx − Nx;Z) so that the
restriction of µNx to Hn(E|y, E|y − 0;Z) is µy for all y ∈ B.

Lemma 1.3. There is a 1 − 1 correspondence between homological orientations and orien-
tations.

As a result we will just use the word orientation instead of homological orientation.

Proof. We will use the following facts:
Fact 1: Let µ ∈ Hn(Rn,R− 0;Z) be a generator of this rank 1 free abelian group. If A is

a linear map with positive determinant then A∗(µ) = µ.
Fact 2: If V is a vector space with a choice of linear isomorphism ∧nV −→ R = ∧nRn.

Then any two linear maps B1, B2 : V −→ Rn inducing the above isomorphism up to homotopy
give the same isomorphism Hn(V, V − 0;Z) −→ Hn(Rn,Rn − 0;Z).

Therefore fact 1 and fact 2 tells us that a choice of trivialization ∧nV −→ R give us a
canonical choice of generator µ ∈ Hn(V, V − 0;Z).

Suppose that π : E −→ B is oriented. Then we have a a choice of trivialization τ :
∧nE −→ B×R. The above discussion tells us that τ induces a canonical choice of generator.
µx ∈ Hn(E|x;E|x−0;Z) Now we define Nx to be a neighborhood of x so that E|Nx = Nx×Rn.
Then µN ∈ Hn(Nx × Rn, Nx × (Rn − 0));Z) = Z is the unique class restricting to µx. This
restricts to µy for each y ∈ Nx be Fact 1 and Fact 2.

Conversely if π : E −→ B is homologically oriented. Then the choice of µx give us local
sections σNx on small neighborhoods Nx of B with the property that σNx and σNy are positive
multiples of each other. Hence we can patch these sections together to get a nowhere zero
section of ∧nE. Hence π : E −→ B is orientable. �

We also have an oriented version of the Thom Isomorphism theorem:
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Theorem 1.4. (Thom Isomorphism Theorem) Let π : E −→ B be an oriented vector bundle.
Then there is a class ẽ(E) ∈ H∗(E,E −B;Z) so that the map

H∗(B;Z) −→ H∗(E;Z), α −→ π∗α ∪ ẽ(E)

is an isomorphism.

Corollary 1.5. If π : E −→ B is oriented then there is a class µB ∈ Hn(E;E −B;Z) whose
restriction to Hn(E|x, E|x − 0;Z) is µx for each x ∈ B.

This theorem follows from the following Theorem:

Theorem 1.6. Let π : E −→ B be an oriented vector bundle. Choose an identification of
the fiber F with Rn so that its orientation is preserved (i.e. the map ∧nRn = R = ∧nF
corresponds to our orientation).

Then there is a class ẽ(E) ∈ H.(E,E−B;Z) so that the restriction of ẽ(E) to H∗(Rn,Rn−
0;Z) ∼= Z is 1 where 1 corresponds to the boundary of the linear n + 1-simplex in Rn with
vertices at the basis vectors e1, · · · , en and at (−1, · · · ,−1).

Also this class is unique by the Thom isomorphism theorem.

Definition 1.7. The class ẽ(E) is called the fundamental class of E.

The Thom Isomorphism Theorem follows from the above theorem combined with the
Leray-Hirsch theorem. But..... The Leray-Hirsch theorem only works when one has coeffients
over a field F . Hence the map

H∗(B;K) −→ H∗(E;K), α −→ π∗α ∪ ẽ(E)

is an isomorphism over any field K. But this is enough to show that

H∗(B;Z) −→ H∗(E;Z), α −→ π∗α ∪ ẽ(E)

is an isomorphism.
Sketch of the proof of Theorem 1.6. The proof of this theorem first uses Mayor-Vietoris and

the five lemma to show that there is a class ẽ(E) whose restriction to any fiber H∗(F, F0;Z) =
H∗(Rn,Rn − 0;Z) ∼= Z is 1. This is where orientability is needed. The reason is that there
are two possible isomorphisms H∗(F, F0;Z) ∼= Z where one is minus one times the other.
The choice of orientation fixes such an isomorphism since it identifies ∧nF with ∧nR in a
canonical way.

We will not give a detailed proof of the Thom isomorphism here as it is essentially the
same as the non-oriented Thom Isomorphism theorem.

Definition 1.8. The Euler Class of a rank n oriented vector bundle π : E −→ B is the
class e(E) ∈ Hn(B;Z) given by the image of ẽ(E) under the map

Hn(E;E0;Z) −→ Hn(E;Z) −→ Hn(B;Z)

where the last morphism is the zero section inclusion map.

Note that the image of e(E) inside H∗(B;Z/2Z) is the unoriented Euler class e(E;Z/2Z).

Lemma 1.9. e(B × Rn) = 0.

Exercise.

We have the following corollary of Theorem 1.6:

Corollary 1.10. There is a 1−1 correspondence between orientations on E and classes ẽ(E)
satisfying the properties of Theorem 1.6.
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To prove this corollary one needs to show that ẽ(E) is unique. This follows from the Thom
isomorphism theorem.

Theorem 1.11. Let π : E −→ B, π : E′ −→ B be vector bundles. Then e(E ⊕ E′) =
e(E) ∪ e(E′).

Proof. Consider the bundle

E × E′ −→ B ×B, (e, e′) −→ (π(e), π′(e′)).

Let P : E×E′ −→ E, P ′ : E×E′ −→ E′ p : B×B′ −→ B, p′ : B×B′ −→ B′ be the natural
projection maps.

Then ẽ(E × E′) = P ∗ẽ(E) ∪ P ′∗ẽ(E′). Hence e(E × E′) = p∗e(E) ∪ P ′∗e(E′).
Let

∆ : B −→ B ×B, ∆(x) = (x, x)

be the diagonal inclusion map. Then since E ⊕E′ ∼= ∆∗(E ×E′), we have that e(E ⊕E′) =
∆∗(p∗e(E) ∪ P ′∗e(E′)) = e(E) ∪ e(E′). �

Corollary 1.12. Suppose that the vector bundle π : E −→ B admits a section s : B −→ E
so that s(x) 6= 0 for all x ∈ B. Then e(E) = 0.

Proof. Let L ⊂ E be the rank 1 vector subbundle whose fiber at x ∈ B consists of the set
of vectors of the form cs(x) where c ∈ R. The L admits a section s and hence L is trivial.
Therefore E ∼= R⊕ (E/L). Hence e(E) = e(R) ∪ e(E/L) = 0 ∪ e(E/L) = 0. �


