## MAT 203 LECTURE OUTLINE 10/25

- The main topic of the day is triple integrals. The same ideas we used to define double integrals can also be used to define triple integrals. The triple integral of a function $f(x, y, z)$ over a region $R$ in $\mathbb{R}^{3}$ is denoted by

$$
\iiint_{R} f(x, y, z) d V
$$

- The triple integral of $f(x, y, z)$ over $R$ is defined as the limit of a Riemann sum over three-dimensional cubes:

$$
\iiint_{R} f(x, y, z) d V=\lim \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right) \Delta x_{i} \Delta y_{i} \Delta z_{i}
$$

where in the limit the partitions become arbitrarily fine, provided this limit exists.

- Just as the double integral of $f(x, y)$ represents "volume under the surface $f(x, y)$ ", the triple integral of $f(x, y, z)$ can be thought of as the "four-dimensional volume contained under the three-dimensional graph of $f(x, y, z) "$
- However, this is probably hard to visualize. Instead, we can think of $R$ as representing a solid object, $f(x, y, z)$ representing its density, and $\iiint_{R} f(x, y, z) d V$ representing the mass of this object.
- Fubini's theorem applies to triple integrals: a triple integral can be evaluated as three iterated integrals.
- Suppose that $R$ is the region in $\mathbb{R}^{3}$ defined by

$$
\begin{aligned}
& a \leq x \leq b \\
& g_{1}(x) \leq y \leq g_{2}(x) \\
& h_{1}(x, y) \leq z \leq h_{2}(x, y)
\end{aligned}
$$

Then

$$
\iiint_{R} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z d y d x
$$

Similar formulas hold for different orders of $x, y, z$.

- Now, let's move on to doing triple integrals in cylindrical coordinates. This is the direct extension of integration in polar coordinates covered last week.
- For example, suppose a region $R$ is described in cylindrical coordinates by

$$
\begin{aligned}
& a \leq \theta \leq b \\
& g_{1}(\theta) \leq r \leq g_{2}(\theta) \\
& h_{1}(r, \theta) \leq z \leq h_{2}(r, \theta)
\end{aligned}
$$

Then

$$
\iiint_{R} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{h_{1}(r, \theta)}^{h_{2}(r, \theta)} f(r \cos (\theta), r \sin (\theta), z) r d z d r d \theta
$$

- There is also a form of integration adapted to spherical coordinates. For simplicity, suppose a region $R$ is described in spherical coordinates by

$$
\begin{aligned}
\rho_{1} & \leq \rho \leq \rho_{2} \\
\theta_{1} & \leq \theta \leq \theta_{2} \\
\phi_{1} & \leq \phi \leq \phi_{2}
\end{aligned}
$$

Then

$$
\iiint_{R} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}}^{\rho_{2}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

- Try computing the volume of the unit sphere in $\mathbb{R}^{3}$ in three ways: as a triple integral in rectangular coordinates, in cylindrical coordinates, and in spherical coordinates. Which one do you like best?

For your reference, here are the three different setups:

$$
\begin{aligned}
& \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} 1 d z d y d x \\
& \int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} r d z d r d \theta \\
& \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin (\phi) d \rho d \theta d \phi
\end{aligned}
$$

The answer is $4 \pi / 3$.

