MAT 203 LECTURE OUTLINE 9/1

- Last time, we looked at the problem of finding the distance between a given point and a given plane. Today, we begin with one more typical geometry problem in three-dimensional space: to find the distance between a given point Q and a given line L. What's interesting is that, while this is essentially a problem in trigonometry, the solution involves only the basic operations of addition and multiplication (via the dot/cross product) and square roots, not the trigonometric functions \sin , \cos , \tan.
- Again, we have a simple method for doing this. First, pick any convenient point P belonging to the line L. Let \mathbf{v} be the direction vector for the line L. Then the distance from Q to L is given by $\|\overrightarrow{P Q} \times \mathbf{v}\| /\|\mathbf{v}\|$. the magnitude of the cross product of $\overrightarrow{P Q}$ and \mathbf{v}. Try sketching a diagram to convince yourself that this formula is valid.
- Try this problem with the point $Q(3,-1,4)$ and the line L defined by the equations $(x, y, z)=$ $(-2+3 t,-2 t, 1+4 t)$. The answer is $\sqrt{6}$.
- Section 11.6 covers three different types of surfaces in \mathbb{R}^{3} : cylindrical surfaces, quadric surfaces, and surfaces of revolution. We will focus on quadric surfaces.
- For reference, a cylindrical surface is one formed by taking a curve in a plane and forming a surface by taking translations of this curve in a fixed direction. The best known example is the right circular cylinder, which we often simply call a "cylinder". A surface of rotation is one formed by rotating a curve in a plane around a fixed axis passing through that plane.
- A quadric surface is one defined by a second-degree equation in x, y, z. (second-degree means each term has at most two variables in it, counting repeats, e.g., $2 x^{2}+3 y z-x=0$ is a second-degree equation. A linear equation is a first-degree equation.) The general second-degree equation has the form

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J,
$$

where A, B, C, D, E, F are not all zero. Depending on the choice of $A, B, C, D, E, F, G, H, I, J$, we can get one of several basic types of surfaces.

- In this class, we will always assume that $D=E=F=0$. That is, the defining equation for a quadric surface has no mixed terms. It turns out that you can always apply a linear change of variables (i.e., replace (x, y, z) with specially chosen variables $(u, v, w)=(f(x, y, z), g(x, y, z), h(x, y, z))$ where f, g, h are linear functions) to eliminate any mixed terms. This is an application of the idea of diagonalizing a matrix in linear algebra and so is beyond the scope of this course.
- A good method to identify a quadric surface is to graph the intersection of the surface with the $x y$-plane, $y z$-plane, and $x z$-plane. The intersection of the surface with a plane is called the trace of that surface with the plane. Each trace of a quadric surface is an ellipse, a hyperbola, a parabola, the union of two lines, or the empty set. How to recognize these is a precalculus topic (conic sections) you should have learned at some point. To recall briefly:
- ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
- hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
_ parabola: $y=\frac{x^{2}}{a^{2}}$
- union of two lines: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$

The different combinations of these different traces is what produces different quadric surfaces. There are six types, listed here with a representative equation:

- ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
- hyperboloid of one sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
- hyperboloid of two sheets: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
- elliptic cone: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$
- elliptic paraboloid: $z+\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
- hyperbolic paraboloid: $z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

See the chart in the textbook for illustrations (note that there is a typo where "elliptic cone" appears in place of "ellipsoid").

- Sketch and identify the following equations (see problems 11.6.5-10 in the textbook): $x^{2} / 9+y^{2} / 16+$ $z^{2} / 9=1 ; 4 x^{2}-y^{2}+4 z^{2}=4 ; 4 x^{2}-4 y+z^{2}=0$.
- There are two other common coordinate systems for \mathbb{R}^{3} besides the standard rectangular coordinates (x, y, z) : cylindrical coordinates and spherical coordinates. Recall that, in the plane, a point can be described by its radius (distance to the origin) and a single angle (measured from the positive x-axis).
- In cylindrical coordinates, a point P is represented by a triple (r, θ, z) satisfying the relations

$$
x=r \cos (\theta), y=r \sin (\theta), z=z
$$

and

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, z=z
$$

These relations indicate how to convert a point from rectangular coordinates to cylindrical and vice versa. Some care must be taken with finding θ for a given (x, y, z).

- In spherical coordinates, a point P is represented by a triple (ρ, θ, ϕ) satisfying the relations

$$
x=\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)
$$

and

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \tan (\theta)=\frac{y}{x}, \cos (\phi)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

- Convert $(x, y, z)=(3 \sqrt{2} / 2,3 \sqrt{2} / 2,1)$ to cylindrical coordinates. Convert $(x, y, z)=(-2,2 \sqrt{3}, 4)$ to spherical coordinates.
- In Chapter 12, we will study vector-valued functions. These are functions whose input is a single real number and whose output is a vector, here usually a 3-dimensional vector. These have the form $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$. The image of such a function (for dimension three) is called a space curve. In the homework, you'll practice evaluating and graphing vector-valued functions.

