
MAT 203 LECTURE OUTLINE 9/22

• Today we’ll be looking at two topics: the chain rule and directional derivatives.
• We can think of the partial derivative fx(x, y) as representing the derivative of f in the x-direction

(the direction i), and fy(x, y) as representing the derivative of f in the y-direction (the direction j),
we can consider the directional derivative in any direction.
• Pick a unit vector u = 〈u1, u2〉. If you have a non-unit vector, then divide by the magnitude to

make it a unit vector. Then the directional derivative of f in the direction u is defined as

Duf(x, y) = lim
t→0

f(x+ tu1, y + tu2)− f(x, y)
t

.

We can also write u = cos(θ)i+ sin(θ)j for some angle θ, and the above formula becomes

Duf(x, y) = lim
t→0

f(x+ t cos(θ), y + t sin(θ))− f(x, y)
t

.

• Example. Let f(x, y) = x2 sin(2y). Find the directional derivative in the direction v = 3i − 4j at
the point (1, π/2).

The answer is Dvf(1, π/2) = 8/5
• In our last lecture, we introduced the idea of a differentiable function f(x, y) as one for which the

linearization of f at every point gives a good approximation of f near that point. If f is differentiable
at a point (x, y) (for example, if the partial derivatives of f are continuous), then we compute the
directional derivative from the formula

Duf(x, y) = fx(x, y) cos(θ) + fy(x, y) sin(θ).

• Next, the gradient of a function f(x, y) is defined as

∇f(x, y) = fx(x, y)i+ fy(x, y)j = 〈fx(x, y), fy(x, y)〉

provided these partial derivatives exist.
• In terms of the gradient, the directional derivative of a vector u can be written as Duf(x, y) =
∇f(x, y) · u.

• The significance of the gradient is that it gives the direction of maximum increase of the function.
To justify this, note that ∇f(x, y) · u is greatest when u and ∇f(x, y) point in the same direction.
Try to convince yourself geometrically as well that this should be true.

In addition, say we have a function f and gradient u = ∇f(x, y) at the point (x, y), so that u is
the direction of maximum increase. Then

Duf(x, y) = ‖∇f(x, y)‖.

• Example. The temperature in Celcius on a metal plate is given by T (x, y) = 20− 4x2− y2. In what
direction from (2,−3) does the temperature increase most rapidly? Try sketching a contour plot of
this function and drawing the gradient vector.

• One feature you should notice in the previous example is that the gradient is orthogonal to the level
curve passing through the base point (2,−3). This is always the case:
Proposition. If f is differentiable at a point (x, y) and ∇f(x, y) 6= 0, then ∇f(x, y) is normal to
the level curve through (x, y).

• Now let’s move on to the chain rule. First we recall the chain rule for one variable:
If h(x) = g(f(x)), then h′(x) = g′(f(x))f ′(x). Alternatively, if we write y = f(x), then

dh

dx
(x) =

dg

dy
(y)

df

dx
(x).

We can write this more compactly (and identifying the variable y with the function f(x)) as

dh

dx
=
dh

dy

dy

dx
.

• For multivariable functions, the concept is the same but more complicated. The big idea is to
account for all possible dependencies between the variables (see Figures 13.39 and 13.41 in the book
for a diagram).
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– In the first case, suppose we have a differentiable function w = f(x, y), and that x, y are
differentiable functions of another variable t: x = g(t) and y = h(t). Then the chain rule states
that

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
.

– In the second case, suppose we have the same situation, except that x, y are now functions of
two variables: x = g(s, t) and y = h(s, t). Assume that all partial derivatives of g and h exist.
Then

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
,

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
.

– The same idea extends to more variables in the expected way. For example, for functions
w = f(x, y, z) and x = g1(s, t). y = g2(s, t), z = g3(s, t), we have

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t
.

• Example. Take w = xy + yz + xz, with x = s cos(t), y = s sin(t), z = t. Find ∂w
∂s and ∂w

∂t for the
values s = 1 and t = 2π.

You should get ∂w
∂s = (y + z) cos(t) + (x + z) sin(t) and ∂w

∂s (1, 2π) = y + z = 0 + 2π = 2π, and
∂w
∂t = (y + z)(−s sin(t)) + (x+ z)(s cos(t)) + (y + x)(1) and ∂w

∂s (1, 2π) = x+ z + y + x = 2 + 2π.
• In Calculus 1, you likely learned about implicit differentiation. We are now able to understand it in

a more precise way.
Recall that, in implicity differentiation, you’re given some relation between x and y such that

sin(xy) = x5+y2 and asked to find dy
dx at some point. By subtracting one side if needed, this can be

written in the form F (x, y) = 0. So what we really have is the level set of a function of two variables
w = F (x, y), with y locally a function of x: w = F (x, y) = F (x, f(x)).

The chain rule gives dw
dx = Fx(x, y)

dx
dx + Fy(x, y)

dy
dx .

But dw
dx = 0 since w = F (x, f(x)) = 0 for all x. So Fx(x, y) + Fy(x, y)

dy
dx = 0.

• We conclude that
dy

dx
= −Fx(x, y)

Fy(x, y)

provided that Fy(x, y) 6= 0. This is exactly the rule that is taught for implicit differentiation.


