Review

- Green's theorem problem: Let $\mathbf{F}(x, y)=\left\langle e^{y^{2}}, e^{x^{2}}\right\rangle$. Find

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for the curve given.

- $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ is often called the circulation of \mathbf{F} over C. What does this mean from a physical point of view?
- Why is curl also called the circulation density?

Statement of Green's theorem

Green's theorem

Let R be a simply connected region with piecewise smooth boundary, oriented counterclockwise. Let $\mathbf{F}=\langle M, N\rangle$, where M, N have continuous first partial derivatives. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} d A
$$

Divergence form of Green's theorem

- Green's theorem can be reinterpreted in terms of divergence

Green's theorem, version II
Let C be a simple closed curve and \mathbf{N} the outward pointing normal vector, with R the region enclosed by C. Let \mathbf{F} be a vector field. Then

$$
\int_{C} \mathbf{F} \cdot \mathbf{N} d s=\iint_{R} \operatorname{div} \mathbf{F} d A
$$

- The integral on the left is called a flux integral

Preview of final stretch of the course

We will encounter two generalizations of Green's theorem:

- Stoke's theorem: a similar theorem for surfaces in \mathbb{R}^{3} and their boundary curves (for the curl form of Green's theorem)
- The divergence theorem: a similar theorem for closed regions in \mathbb{R}^{3} and their boundary surfaces (for the divergence form of Green's theorem)

Ways of describing surfaces

So far in this course, we've used two main ways to describe surfaces in \mathbb{R}^{3}

- The level set of a function $F(x, y, z)$ is typically a surface (e.g. equations of planes, spheres, conic sections)
- The graph $z=f(x, y)$ of a function (e.g., upper and lower half spheres)

Parametric surfaces

- A third way, and the focus of this lecture, is by a parametrization: $(x, y, z)=\mathbf{r}(u, v)$, where \mathbf{r} is a vector-valued function of two variables
- Depending on the problem, we might use another pair of variables like (θ, ϕ) or (r, θ) instead of (u, v).

Tangent planes and normal lines

- \mathbf{r}_{u} and \mathbf{r}_{v} are both tangent vectors to the surface at each point. Together, they determine the tangent plane to the surface
- The cross product $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is the normal vector to the surface (if it is nonzero)
- The surface area of a parametrized surface is given by the formula

$$
S A=\iint_{R}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d A
$$

