Review

- What is curl of $\mathbf{F}=\langle M, N\rangle$, i.e., in the 2-D case?
- What does "irrotational" mean?
- What is noteworthy about the vector field

$$
\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle ?
$$

- Let C be the unit circle traversed once counterclockwise. What is $\int_{C} \mathbf{F} \cdot \mathbf{d r}$?
- Is there any difference in meaning between the expressions $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C} M d x+N d y$?

Green's theorem

- This theorem puts curl into a broader perspective
- It applies specifically to the plane. In later sections, we cover Stoke's theorem and the
Divergence theorem, which are analogous theorems in \mathbb{R}^{3}

Green's theorem

Let R be a simply connected region with piecewise smooth boundary, oriented counterclockwise. Let $\mathbf{F}=\langle M, N\rangle$, where M, N have continuous first partial derivatives. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} d A
$$

Putting the picture together

- Interpretation of curl: line integral over a "small loop"
- Interpretation: motion of a paddle wheel
- Combining loops
- Notation: $\oint F \cdot d \mathbf{r}$ or $\oint F \cdot d \mathbf{r}$,
$\oint F \cdot d r$
(also called counterclockwise/clockwise circulation of F around C)

Using Green's theorem

- Green's theorem is especially useful for evaluating a complicated line integral by replacing it with a simpler double integral
- Green's theorem can also be useful in the other direction: replacing a double integral with a line integral
- Finding the area of a region with Green's theorem:

$$
\operatorname{Area}(R)=\frac{1}{2} \int_{C} x d y-y d x
$$

where R is the region bounded by the simple closed curve C.

Divergence form of Green's theorem

- Green's theorem can be reinterpreted in terms of divergence

Green's theorem, version II
Let C be a simple closed curve and \mathbf{N} the outward pointing normal vector, with R the region enclosed by C. Let \mathbf{F} be a vector field. Then

$$
\int_{C} \mathbf{F} \cdot \mathbf{N} d s=\iint_{R} \operatorname{div} \mathbf{F} d A
$$

