MAT 203

Final Exam.

This is a closed notes/ closed book/ electronics off exam.
Please write legibly and show your work.
Each problem is worth 20 points.

Full Name:

Problem	1	2	3	4	5
Grade					
Problem	6	7	8	9	10
Grade					
Total:					

Problem 1. Let S be the surface given by $x^{2}+2 y^{2}-z^{2}=21$. Find a unit normal vector to the surface at the point $(2,3,1)$ and give an equation of the tangent plane through the point.

Problem 2. Let $F(x, y, z)=\ln \left(x^{2}+y^{2}\right)+z$.
a. Find the directional derivative $D_{\underline{u}} F(1,0,2)$ in the direction $\underline{u}=$ $\left\langle\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right\rangle$.
b. Determine the direction of greatest increase at the point $(1,0,2)$.

Problem 3. Let $F(x, y)=\frac{1}{3} x^{3}-x y^{2}-x$. Find all critical points of F and determine whether each is a local minimum, local maximum or saddle point.

Problem 4. Find the maximum and minimum of $f(x, y, z)=2 x+$ $3 y+4 z$ on the surface $x^{2}+y^{2}+z^{2}=1$.

Problem 5. The upper hemisphere $H=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq\right.$ $1, z \geq 0\}$ is given mass density $f(x, y, z)=z$.
a. Find the total mass of the solid H.
b. Calculate the center of mass of H.
(Hint: the volume element in spherical coordinates is $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$.)

Problem 6. Let H be the surface $H=\left\{\left(x, y, 16-x^{2}-y^{2}\right): x^{2}+y^{2} \leq\right.$ $16\}$. Find the surface area of H.

Problem 7. Let C be the curve $\underline{r}(t)=\left\langle t, \frac{e^{t}+e^{-t}}{2}\right\rangle, 0 \leq t \leq 1$.
a. Calculate the unit tangent vector $T(t)$ and the unit normal vector $N(t)$ to the curve. (Hint: $N(t)$ is a 90 degree rotation of $T(t)$.)
b. Calculate the flux of the vector field $F(x, y)=\langle 1, y\rangle$ across C in the upward direction, that is, calculate

$$
\int_{C} F \cdot N d s
$$

Problem 8.

a. Show that the vector field

$$
F(x, y)=\left\langle 2 x e^{x^{2}+y^{2}}, 2 y e^{x^{2}+y^{2}}+e^{y}\right\rangle
$$

is conservative, and calculate a potential function.
b. Let C be a smooth curve oriented to begin at $(0,0)$ and end at $(2,3)$. Calculate

$$
\int_{C} F \cdot d \underline{r} .
$$

Problem 9. Let C be the boundary of the rectangle $[0,3] \times[2,6]$, oriented in the counter-clockwise direction. Use Green's Theorem to calculate

$$
\int_{C}\left(\arctan x+y e^{x y}\right) d x+\left(x e^{x y}+\sin y+x\right) d y
$$

Problem 10. Let $R=\{(x, y): 0 \leq x+y \leq 1,0 \leq x-y \leq 1\}$. Calculate

$$
\iint_{R} e^{4 x+2 y} d A
$$

Use for scratch.

Use for scratch.

Use for scratch.

Use for scratch.

