MAT 203

Midterm 2.

April 8, 2019
This is a closed notes/ closed book/ electronics off exam.
Please write legibly and show your work.
Each problem is worth 20 points.

Full Name:

Problem	1	2	3
Grade			
Problem	4	5	Total
Grade			

Problem 1. Find the equation of the tangent plane and normal line through the point $(1,1,2)$ on the surface $3 x^{2}+2 x y z+z^{2}=11$.

Problem 2. Let z be defined implicitly as a function of x and y by the equation

$$
\sin (x z)+y z^{2}=1
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. You may assume that $x \cos (x z)+2 y z \neq 0$.

Problem 3.

a. Calculate the partial derivatives and total differential of

$$
w=e^{x^{2}+y^{2}} \cos (x y) .
$$

b. Now let $x=r \cos \theta, y=r \sin \theta$ and calculate $\frac{\partial w}{\partial r}$. You are not required to simplify your answer.

Problem 4. Find all local minima, local maxima and saddle points of

$$
f(x, y)=x^{3}-x^{2}+y^{2}=0
$$

Problem 5. Find the maximum and minimum values of $f(x, y)=$ $2 x^{2}+3 x+y^{2}$ on the circle $x^{2}+y^{2}=4$.

Use for scratch.

Use for scratch.

