
3.5 | Other Strategies for Integration

Learning Objectives
3.5.1 Use a table of integrals to solve integration problems.

3.5.2 Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the
process of integration. Among these tools are integration tables, which are readily available in many books, including the
appendices to this one. Also widely available are computer algebra systems (CAS), which are found on calculators and in
many campus computer labs, and are free online.

Tables of Integrals
Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in
mind that when using a table to check an answer, it is possible for two completely correct solutions to look very different.
For example, in Trigonometric Substitution, we found that, by using the substitution x = tanθ, we can arrive at

∫ dx
1 + x2

= ln⎛
⎝x + x2 + 1⎞

⎠ + C.

However, using x = sinhθ, we obtained a different solution—namely,

∫ dx
1 + x2

= sinh−1 x + C.

We later showed algebraically that the two solutions are equivalent. That is, we showed that sinh−1 x = ln⎛
⎝x + x2 + 1⎞

⎠.

In this case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the
difference in the two antiderivatives is a constant, they are equivalent.

Example 3.36

Using a Formula from a Table to Evaluate an Integral

Use the table formula

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C

to evaluate ∫ 16 − e2x

ex dx.

Solution

If we look at integration tables, we see that several formulas contain expressions of the form a2 − u2. This

expression is actually similar to 16 − e2x, where a = 4 and u = ex. Keep in mind that we must also have

du = ex. Multiplying the numerator and the denominator of the given integral by ex should help to put this

integral in a useful form. Thus, we now have

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx.
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Substituting u = ex and du = ex produces ∫ a2 − u2

u2 du. From the integration table (#88 in Appendix A),

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C.

Thus,

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx Substitute u = ex and du = ex dx.

= ∫ 42 − u2

u2 du Apply the formula using a = 4.

= − 42 − u2
u − sin−1 u

4 + C Substitute u = ex.

= − 16 − e2x
u − sin−1 ⎛

⎝
ex

4
⎞
⎠ + C.

Computer Algebra Systems
If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely
available and are, in general, quite easy to use.

Example 3.37

Using a Computer Algebra System to Evaluate an Integral

Use a computer algebra system to evaluate ∫ dx
x2 − 4

. Compare this result with ln| x2 − 4
2 + x

2| + C, a result

we might have obtained if we had used trigonometric substitution.

Solution

Using Wolfram Alpha, we obtain

∫ dx
x2 − 4

= ln| x2 − 4 + x| + C.

Notice that

ln| x2 − 4
2 + x

2| + C = ln| x2 − 4 + x
2 | + C = ln| x2 − 4 + x| − ln2 + C.

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also
demonstrated that each of these antiderivatives is correct by differentiating them.

You can access an integral calculator (http://www.openstaxcollege.org/l/20_intcalc) for more examples.
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Example 3.38

Using a CAS to Evaluate an Integral

Evaluate ∫ sin3 xdx using a CAS. Compare the result to 1
3cos3 x − cosx + C, the result we might have

obtained using the technique for integrating odd powers of sinx discussed earlier in this chapter.

Solution

Using Wolfram Alpha, we obtain

∫ sin3 xdx = 1
12(cos(3x) − 9cosx) + C.

This looks quite different from 1
3cos3 x − cosx + C. To see that these antiderivatives are equivalent, we can

make use of a few trigonometric identities:

1
12(cos(3x) − 9cosx) = 1

12(cos(x + 2x) − 9cosx)

= 1
12(cos(x)cos(2x) − sin(x)sin(2x) − 9cosx)

= 1
12(cosx⎛

⎝2cos2 x − 1⎞
⎠ − sinx(2sinxcosx) − 9cosx)

= 1
12(2cos x − cosx − 2cosx⎛

⎝1 − cos2 x⎞
⎠ − 9cosx)

= 1
12(4cos x − 12cosx)

= 1
3cos x − cosx.

Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Figure 3.12 The graphs of y = 1
3cos3 x − cosx and

y = 1
12(cos(3x) − 9cosx) are identical.

Use a CAS to evaluate ∫ dx
x2 + 4

.
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3.5 EXERCISES
Use a table of integrals to evaluate the following integrals.

244. ∫
0

4
x

1 + 2x
dx

245. ∫ x + 3
x2 + 2x + 2

dx

246. ∫ x3 1 + 2x2dx

247. ∫ 1
x2 + 6x

dx

248. ∫ x
x + 1dx

249. ∫ x · 2x2
dx

250. ∫ 1
4x2 + 25

dx

251. ∫ dy
4 − y2

252. ∫ sin3(2x)cos(2x)dx

253. ∫ csc(2w)cot(2w)dw

254. ∫ 2y dy

255. ∫
0

1
3xdx
x2 + 8

256. ∫
−1/4

1/4
sec2(πx)tan(πx)dx

257. ∫
0

π/2
tan2 ⎛

⎝
x
2

⎞
⎠dx

258. ∫ cos3 xdx

259. ∫ tan5 (3x)dx

260. ∫ sin2 ycos3 ydy

Use a CAS to evaluate the following integrals. Tables can

also be used to verify the answers.

261. [T] ∫ dw
1 + sec⎛

⎝
w
2

⎞
⎠

262. [T] ∫ dw
1 − cos(7w)

263. [T] ∫
0

t
dt

4cos t + 3sin t

264. [T] ∫ x2 − 9
3x dx

265. [T] ∫ dx
x1/2 + x1/3

266. [T] ∫ dx
x x − 1

267. [T] ∫ x3 sinxdx

268. [T] ∫ x x4 − 9dx

269. [T] ∫ x
1 + e−x2dx

270. [T] ∫ 3 − 5x
2x dx

271. [T] ∫ dx
x x − 1

272. [T] ∫ ex cos−1(ex)dx

Use a calculator or CAS to evaluate the following integrals.

273. [T] ∫
0

π/4
cos(2x)dx

274. [T] ∫
0

1
x · e−x2

dx

275. [T] ∫
0

8
2x

x2 + 36
dx

276. [T] ∫
0

2/ 3
1

4 + 9x2dx
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277. [T] ∫ dx
x2 + 4x + 13

278. [T] ∫ dx
1 + sinx

Use tables to evaluate the integrals. You may need to
complete the square or change variables to put the integral
into a form given in the table.

279. ∫ dx
x2 + 2x + 10

280. ∫ dx
x2 − 6x

281. ∫ ex

e2x − 4
dx

282. ∫ cosx
sin2 x + 2sinx

dx

283. ∫ arctan⎛
⎝x

3⎞
⎠

x4 dx

284. ∫ ln|x|arcsin(ln|x|)
x dx

Use tables to perform the integration.

285. ∫ dx
x2 + 16

286. ∫ 3x
2x + 7dx

287. ∫ dx
1 − cos(4x)

288. ∫ dx
4x + 1

289. Find the area bounded by

y⎛
⎝4 + 25x2⎞

⎠ = 5, x = 0, y = 0, and x = 4. Use a table of

integrals or a CAS.

290. The region bounded between the curve

y = 1
1 + cosx

, 0.3 ≤ x ≤ 1.1, and the x-axis is

revolved about the x-axis to generate a solid. Use a table of
integrals to find the volume of the solid generated. (Round
the answer to two decimal places.)

291. Use substitution and a table of integrals to find the
area of the surface generated by revolving the curve
y = ex, 0 ≤ x ≤ 3, about the x-axis. (Round the answer

to two decimal places.)

292. [T] Use an integral table and a calculator to find
the area of the surface generated by revolving the curve

y = x2

2 , 0 ≤ x ≤ 1, about the x-axis. (Round the answer

to two decimal places.)

293. [T] Use a CAS or tables to find the area of the surface
generated by revolving the curve y = cosx, 0 ≤ x ≤ π

2,

about the x-axis. (Round the answer to two decimal
places.)

294. Find the length of the curve y = x2

4 over [0, 8].

295. Find the length of the curve y = ex over ⎡
⎣0, ln(2)⎤

⎦.

296. Find the area of the surface formed by revolving
the graph of y = 2 x over the interval [0, 9] about the

x-axis.

297. Find the average value of the function

f (x) = 1
x2 + 1

over the interval [−3, 3].

298. Approximate the arc length of the curve y = tan(πx)

over the interval
⎡
⎣0, 1

4
⎤
⎦. (Round the answer to three

decimal places.)
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