# MAT 132 Midterm II Solutions.

This is a closed notes/ closed book/ electronics off exam.

Please write legibly and show your work.

Each problem is worth 20 points.

| Full Name: |   |   |   |   |   |       |  |
|------------|---|---|---|---|---|-------|--|
| Problem    | 1 | 2 | 3 | 4 | 5 | Total |  |
| Grade      |   |   |   |   |   |       |  |

**Problem 1.** The ice cream in an ice cream cone makes up a right circular cone of diameter 4 inches and height 5 inches, together with a spherical cap which extends to height 1 inch above the top of the cone. Find the volume of ice cream.

Solution 1. The volume of the ice cream in the cone is

$$\frac{1}{3}$$
(base) × (height) =  $\frac{20\pi}{3}$ .

To determine the radius r of the sphere making the spherical cap, form a right triangle with legs r - 1, 2 and hypotenuse r by dropping a perpendicular from the center of the sphere to the center of the base of the cone, and then connecting it to a point on the boundary. Hence

$$r^2 - (r-1)^2 = 2r - 1 = 4,$$

so  $r = \frac{5}{2}$ . By the washer method, the volume of the spherical cap is

$$\int_{\frac{3}{2}}^{\frac{5}{2}} \pi\left(\left(\frac{5}{2}\right)^2 - x^2\right) dx = \pi \left[\frac{25}{4}x - \frac{x^3}{3}\right]_{\frac{3}{2}}^{\frac{5}{2}} = \frac{13\pi}{6}.$$

Hence the total volume of ice cream is  $\frac{20\pi}{3} + \frac{13\pi}{6} = \frac{53\pi}{6}$ .

Problem 2. Find the center of mass of the region

$$R = \{(x, y) : x \ge 0, 0 \le y \le x (4 - x^2)\}.$$

Solution 2. The total area is

$$A = \int_0^2 4x - x^3 dx = \left[2x^2 - \frac{x^4}{4}\right]_0^2 = 4.$$

The moment in the x direction is

$$M_x = \int_0^2 x(4x - x^3)dx = \int_0^2 4x^2 - x^4 dx = \left[\frac{4x^3}{3} - \frac{x^5}{x}\right]_0^2 = \frac{64}{15}.$$

The moment in the y direction is

$$M_y = \int_0^2 \frac{1}{2} \left(4x - x^3\right)^2 dx = \frac{1}{2} \int_0^2 x^6 - 8x^4 + 16x^2 dx$$
$$= \frac{1}{2} \left[\frac{x^7}{7} - \frac{8x^5}{5} + \frac{16x^3}{3}\right]_0^2$$
$$= \frac{512}{105}.$$

Thus  $(\overline{x}, \overline{y}) = \left(\frac{16}{15}, \frac{128}{105}\right)$ .

## Problem 3.



b. Find the length of the astroid

$$A = \left(\cos^3\theta, \sin^3\theta\right), \qquad 0 \le \theta \le 2\pi.$$

## Solution 3.

b. Since 
$$x'(\theta) = -3\cos^2\theta\sin\theta$$
,  $y'(\theta) = 3\sin^2\theta\cos\theta$ ,  
 $x'(\theta)^2 + y'(\theta)^2 = 9\cos^4\theta\sin^2\theta + 9\cos^2\theta\sin^4\theta$   
 $= 9\cos^2\theta\sin^2\theta(\cos^2\theta + \sin^2\theta)$   
 $= \frac{9}{4}(\sin 2\theta)^2$ .

Thus the arc length is equal to

$$L = \int_0^{2\pi} \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = \frac{3}{2} \int_0^{2\pi} |\sin 2\theta| d\theta = 6.$$

#### Problem 4.

- a. Find the work done by gravity when a 50 pound bucket of water is pulled up a 20 foot well by a rope weighing one pound per foot.
- b. Now suppose that the bucket is pulled upward at a constant rate of .5 foot per second and that water leaks out of the bucket at a rate of 1 pound per second, and that there is still water in the bucket when it reaches the top of the well. Find the work done by gravity in this case.

#### Solution 4.

a. When the bucket has been lifted distance x, the weight of the bucket and rope is 70 - x. Thus the work done by gravity is

$$-\int_{0}^{20} 70 - x dx = -\left[70x - \frac{x^2}{2}\right]_{0}^{20} = -1200 \text{ft-lb}.$$

b. At time t seconds, the bucket has been raised t/2 feet, and t pounds of water has leaked out. Thus, when the bucket has been raised x feet, 2x pounds of water have leaked out, so that the total weight of rope and bucket is 70 - 3x. The work done now is

$$-\int_{0}^{20} 70 - 3x dx = -\left[70x - \frac{3x^2}{2}\right]_{0}^{20} = -800$$
ft-lb.

### Problem 5.

a. Match each differential equation to the corresponding vector field, and sketch the solution with initial value y(0) = 0.

i. 
$$y' = x^2 + y^2 - 1$$
 (C)  
ii.  $y' = 1 + x - y$  (A)  
iii.  $y' = 1 + x^2$  (B)





b. Use Euler's method with step  $h = \frac{1}{3}$  to estimate y(1) given the initial value problem

$$y' = 9(x^2 + y^2), \qquad y(0) = 0.$$

Does Euler's method give an over or an underestimate? Why?

Solution 5.

b. The output of Euler's method with step  $\frac{1}{3}$  is shown, the estimated value is 2.

| x             | y             | y' |
|---------------|---------------|----|
| 0             | 0             | 0  |
| $\frac{1}{3}$ | 0             | 1  |
| $\frac{2}{3}$ | $\frac{1}{3}$ | 5  |
| 1             | 2             |    |

Since  $y'' = 18x + 18yy' = 18x + 162y(x^2 + y^2) \ge 0$  along the solution curves in the first quadrant, the solution curves are convex, so the secant lines lie below the curves. Thus Euler's method gives an underestimate.