MAT 132

Practice Final Exam. May 9, 2018

This is a closed notes/ closed book/ electronics off exam.

Please write legibly and show your work.

Each problem is worth 20 points.

Full Name:				
Problem	1	2	3	4
Grade				
Problem	5	6	7	Total
Grade				

Problem 1. Decide whether each series converges or diverges. Justify your answer.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1 + \log n}$$

b.
$$\sum_{n=1}^{\infty} \frac{n+1}{e^{\sqrt{n}}}$$

c.
$$\sum_{n=1}^{\infty} \sin\left(\frac{(-1)^n}{n}\right)$$

d.
$$\sum_{n=1}^{\infty} \frac{n-3}{n^3+1}$$

Problem 2.

a. Find the Taylor series of \sqrt{x} about x = 1 and determine the interval of convergence.

b. Evaluate as an infinite series $\int e^{-t^2} dt$.

Problem 3. Approximate $\sin\left(\frac{1}{2}\right)$ correct to within 10^{-6} by performing a Taylor expansion about 0.

Problem 4. Solve the following initial value problems. a. $\frac{dy}{dx} = x(1 - y^2), y(0) = 0.$

b.
$$\frac{dy}{dx} = yx\sqrt{1+x^2}, y(0) = 1.$$

Problem 5.

a. Find the length of the curve $(e^{2t}, e^{3t}), 0 \le t \le 10$.

b. Find the center of mass of the figure $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} dx$

$$A = \{(x, y) : -5 \le x \le 5, x^2 \le y \le 25\}.$$

Problem 6. Perform the following indefinite integrals. a. $\int \frac{x}{1+x^4} dx$

b. $\int x^3 \sin x dx$

C. $\int \frac{dx}{x^3+5x}$

d. $\int \frac{dx}{x(\log x)^2}$.

Problem 7. The population of wolves (W) and rabbits (R) in an ecosystem is governed by the predator-prey equations

$$\frac{dR}{dt} = 0.1R - .002RW, \qquad \frac{dW}{dt} = -0.01W + 0.0002RW.$$

Find any equilibrium points for the system, and derive the family of curves describing the periodic R-W phase trajectories.