MAT 132

Practice Final Exam.

May 9, 2018
This is a closed notes/ closed book/ electronics off exam.
Please write legibly and show your work.
Each problem is worth 20 points.

Full Name:

Problem	1	2	3	4
Grade				
Problem	5	6	7	Total
Grade				

Problem 1. Decide whether each series converges or diverges. Justify your answer.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\log n}$
b. $\sum_{n=1}^{\infty} \frac{n+1}{e \sqrt{n}}$
c. $\sum_{n=1}^{\infty} \sin \left(\frac{(-1)^{n}}{n}\right)$
d. $\sum_{n=1}^{\infty} \frac{n-3}{n^{3}+1}$

Solution 1.

a. This converges by the alternating series test, since $\frac{1}{1+\log x}$ is decreasing and positive on $[1, \infty)$.
b. This converges by comparison with $\sum \frac{1}{n^{2}}$ since

$$
\lim _{n \rightarrow \infty} \frac{\frac{n+1}{e \sqrt{n}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}(n+1)}{e^{\sqrt{n}}}=\lim _{x \rightarrow \infty} \frac{x^{4}\left(x^{2}+1\right)}{e^{x}}=0 .
$$

c. Write this as

$$
\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)
$$

This converges by the alternating series test $\operatorname{since} \sin \left(\frac{1}{x}\right)$ is positive and decreasing on $[1, \infty)$.
d. Since $\frac{n-3}{n^{3}+1}<\frac{n}{n^{3}}=\frac{1}{n^{2}}$, and $\frac{n-3}{n^{3}+1}>0$ for $n>3$, the series converges by comparison with $\sum \frac{1}{n^{2}}$.

Problem 2.

a. Find the Taylor series of \sqrt{x} about $x=1$ and determine the interval of convergence.
b. Evaluate as an infinite series $\int e^{-t^{2}} d t$.

Solution 2.

a. Let $y=x-1$. The Taylor series of $(1+y)^{\frac{1}{2}}$ is given by the binomial series

$$
(1+y)^{\frac{1}{2}}=1+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n} y^{n}
$$

where

$$
\binom{\frac{1}{2}}{n}=\frac{\frac{1}{2} \frac{-1}{2} \cdots \frac{3-2 n}{2}}{n!} .
$$

The radius of convergence is 1 , see notes from lecture.
b. Substitute $x=-t^{2}$ in the Taylor series for e^{x} to obtain

$$
e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{\left(-t^{2}\right)^{n}}{n!}
$$

Since this converges absolutely on $(-\infty, \infty)$

$$
\int e^{-t^{2}} d t=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1) n!}
$$

Problem 3. Approximate $\sin \left(\frac{1}{2}\right)$ correct to within 10^{-6} by performing a Taylor expansion about 0 .

Solution 3. The Mclaurin series for $\sin x$ gives

$$
\sin \left(\frac{1}{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n+1}(2 n+1)!} .
$$

This is an alternating series with decreasing terms, so the error from taking a partial sum is bounded by the size of the next term in the series. Thus the error in estimating $\sin \left(\frac{1}{2}\right)$ with the degree 7 Taylor polynomial at 0 is bounded by

$$
\frac{1}{2^{9} 9!}=\frac{1}{512 \cdot 9!}<5.4 \times 10^{-9} .
$$

The approximation is $\frac{1}{2}-\frac{1}{2^{3} \times 3!}+\frac{1}{2^{5} \times 5!}-\frac{1}{2^{7} \times 7!}=0.4794255$.

Problem 4. Solve the following initial value problems.
a. $\frac{d y}{d x}=x\left(1-y^{2}\right), y(0)=0$.
b. $\frac{d y}{d x}=y x \sqrt{1+x^{2}}, y(0)=1$.

Solution 4.

a. The equation is separable, so integrating

$$
\int \frac{d y}{1-y^{2}}=\frac{1}{2} \int\left(\frac{1}{1+y}+\frac{1}{1-y}\right) d y=\int x d x
$$

Thus

$$
\frac{1}{2} \ln \left(\frac{1+y}{1-y}\right)=C+\frac{x^{2}}{2} .
$$

Plugging in $y=0$ obtains $C=0$. Hence

$$
y=\frac{e^{x^{2}}-1}{e^{x^{2}}+1} .
$$

b. The equation is separable, so integrating

$$
\int \frac{d y}{y}=\int x \sqrt{1+x^{2}} d x
$$

In the second integral, substituting $u=1+x^{2}, d u=2 x d x$ obtains

$$
\ln |y|=C+\frac{1}{3} u^{\frac{3}{2}}=C+\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}} .
$$

Thus

$$
y=A e^{\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}} .
$$

Plugging in $x=0$ obtains $A=e^{-\frac{1}{3}}$ so

$$
y=e^{\frac{1}{3}\left(\left(1+x^{2}\right)^{\frac{3}{2}}-1\right)} .
$$

Problem 5.

a. Find the length of the curve $\left(e^{2 t}, e^{3 t}\right), 0 \leq t \leq 10$.
b. Find the center of mass of the figure

$$
A=\left\{(x, y):-5 \leq x \leq 5, x^{2} \leq y \leq 25\right\}
$$

Solution 5.

a. $(x(t), y(t))=\left(e^{2 t}, e^{3 t}\right),\left(x^{\prime}(t), y^{\prime}(t)\right)=\left(2 e^{2 t}, 3 e^{3 t}\right)$. Thus

$$
\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sqrt{4 e^{4 t}+9 e^{6 t}}=e^{2 t} \sqrt{4+9 e^{2 t}} .
$$

The arc-length is

$$
L=\int_{0}^{10} e^{2 t} \sqrt{4+9 e^{2 t}} d t
$$

Substitute $u=4+9 e^{2 t}, d u=18 e^{2 t} d t$. Thus

$$
L=\frac{1}{18} \int_{13}^{4+9 e^{20}} u^{\frac{1}{2}} d u=\frac{1}{27}\left[\left(4+9 e^{20}\right)^{\frac{3}{2}}-13 \sqrt{13}\right] .
$$

b. By symmetry, the center of mass of the figure lies on the y axis. The total mass is

$$
m=\int_{-5}^{5}\left(25-x^{2}\right) d x=\left[25 x-\frac{x^{3}}{3}\right]_{-5}^{5}=\frac{500}{3}
$$

The y moment is

$$
M_{y}=\int_{-5}^{5} \frac{1}{2}\left(25^{2}-\left(x^{2}\right)^{2}\right) d x=\frac{1}{2}\left[625 x-\frac{x^{5}}{5}\right]_{-5}^{5}=2500 .
$$

Thus the center of mass is $(\bar{x}, \bar{y})=(0,15)$.

Problem 6. Perform the following indefinite integrals.
a. $\int \frac{x}{1+x^{4}} d x$
b. $\int x^{3} \sin x d x$
c. $\int \frac{d x}{x^{3}+5 x}$
d. $\int \frac{d x}{x(\log x)^{2}}$.

Solution 6.

a. Substitute $u=x^{2}, d u=2 x d x$.
$\int \frac{x}{1+x^{4}} d x=\frac{1}{2} \int \frac{d u}{1+u^{2}}=C+\frac{1}{2} \arctan u=C+\frac{1}{2} \arctan x^{2}$.
b. Integrate by parts with $u=x^{3}, d u=3 x^{2} d x, d v=\sin x d x$, $v=-\cos x$. Hence

$$
\int x^{3} \sin x d x=-x^{3} \cos x+\int 3 x^{2} \cos x d x
$$

Integrate by parts again with $u=3 x^{2}, d u=6 x d x, d v=$ $\cos x d x, v=\sin x$. Hence

$$
\int x^{3} \sin x d x=-x^{3} \cos x+3 x^{2} \sin x-\int 6 x \sin x d x
$$

Integrate by parts again with $u=6 x, d u=6 d x, d v=\sin x d x$, $v=-\cos x$. Hence

$$
\begin{aligned}
\int x^{3} \sin x d x & =-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \int \cos x d x \\
& =-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x .
\end{aligned}
$$

c. Write $\frac{1}{x^{3}+5 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+5}$. Cross multiplying,

$$
1=A\left(x^{2}+5\right)+x(B x+C) .
$$

Setting $x=0, A=\frac{1}{5}$. This forces $C=0$ and $B=-\frac{1}{5}$. Thus

$$
\begin{aligned}
\int \frac{d x}{x^{3}+5 x} & =\int \frac{d x}{5 x}-\int \frac{1}{5} \frac{x d x}{x^{2}+5} \\
& =\frac{1}{5} \ln |x|-\frac{1}{10} \ln \left(x^{2}+5\right)+C .
\end{aligned}
$$

d. Substitute $u=\log x, d u=\frac{d x}{x}$.

$$
\int \frac{d x}{x(\log x)^{2}}=\int \frac{d u}{u^{2}}=-u^{-1}+C=-(\log x)^{-1}+C
$$

Problem 7. The population of wolves (W) and rabbits (R) in an ecosystem is governed by the predator-prey equations

$$
\frac{d R}{d t}=0.1 R-0.002 R W, \quad \frac{d W}{d t}=-0.01 W+0.0002 R W
$$

Find any equilibrium points for the system, and derive the family of curves describing the periodic $R-W$ phase trajectories.

Solution 7. Since

$$
\begin{aligned}
\frac{d R}{d t} & =R(0.1-0.002 W) \\
\frac{d W}{d t} & =W(-0.01+0.0002 R)
\end{aligned}
$$

Equilibria occur where $R=W=0$ and where $(R, W)=(50,50)$. By the chain rule,

$$
\frac{d W}{d R}=\frac{W}{R} \frac{-0.01+0.0002 R}{0.1-0.002 W}
$$

This equation is separable, and is integrated to

$$
\int \frac{0.1-0.002 W}{W} d W=-\int \frac{0.01-0.0002 R}{R} d R
$$

or

$$
0.1 \ln W-0.002 W+0.01 \ln R-0.0002 R=C .
$$

