MAT 132
 Practice Midterm II.
 March 28

This is a closed notes/ closed book/ electronics off exam.
Please write legibly and show your work.
Each problem is worth 20 points.

Full Name:						
Problem	1	2	3	4	5	Total
Grade						

Problem 1. Find the volume of a solid whose base is a circle of radius 1 , and whose horizontal cross-sections are squares.

Problem 2. Let R be the region

$$
R=\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \sin x\}
$$

a. Find the center of mass of R.
b. Let S be the solid found by rotating R about the y axis. Find the volume of S.
c. Let T be the solid found by rotating R about the x axis. Find the volume of T.

Problem 3. Find the length of a curve given by the parametric equations $x(t)=e^{t} \cos t, y(t)=e^{t} \sin t, 0 \leq t \leq \pi$. Find the average x and y coordinates over this interval.

Problem 4. A 5 kg mass is attached to a spring with spring constant $K=20 \mathrm{~kg} / \mathrm{s}^{2}$. The spring is stretched to 10 cm and then released, after which it exhibits simple harmonic motion with displacement from equilibrium in cm

$$
x(t)=10 \cos (2 t) .
$$

Find the work done in Joules on the mass by the spring between $t=0$ and $t=\frac{\pi}{2}$.

Problem 5.

a. Given the initial value problem $y^{\prime}=2(x+y-1), y(0)=1$, use Euler's method with step $h=\frac{1}{2}$ to estimate $y(2)$.
b. Find the equilibria of the time homogeneous differential equation $y^{\prime}=\cos (\pi y)$. An equilibrium $y=a$ is called stable if there is a small interval $I=[a-\delta, a+\delta]$ such that if $y(0) \in I$ then $y(t) \rightarrow a$ as $t \rightarrow \infty$. Which equilibria are stable?

