MAT 132 Practice Midterm II. March 28

This is a closed notes/ closed book/ electronics off exam.

Please write legibly and show your work.

Each problem is worth 20 points.

Full Name:						
Problem	1	2	3	4	5	Total
Grade						

Problem 1. Find the volume of a solid whose base is a circle of radius 1, and whose horizontal cross-sections are squares.

Problem 2. Let R be the region

 $R = \{(x, y) : 0 \le x \le \pi, 0 \le y \le \sin x\}.$

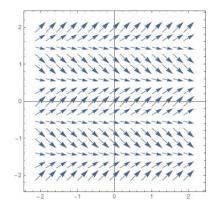
a. Find the center of mass of R.

b. Let S be the solid found by rotating R about the y axis. Find the volume of S.

c. Let T be the solid found by rotating R about the x axis. Find the volume of T.

Problem 3. Find the length of a curve given by the parametric equations $x(t) = e^t \cos t$, $y(t) = e^t \sin t$, $0 \le t \le \pi$. Find the average x and y coordinates over this interval.

Problem 4. A 5kg mass is attached to a spring with spring constant $K = 20kg/s^2$. The spring is stretched to 10 cm and then released, after which it exhibits simple harmonic motion with displacement from equilibrium in cm


$$x(t) = 10\cos(2t).$$

Find the work done in Joules on the mass by the spring between t = 0 and $t = \frac{\pi}{2}$.

Problem 5.

a. Given the initial value problem y' = 2(x + y - 1), y(0) = 1, use Euler's method with step $h = \frac{1}{2}$ to estimate y(2).

b. Find the equilibria of the time homogeneous differential equation $y' = \cos(\pi y)$. An equilibrium y = a is called stable if there is a small interval $I = [a - \delta, a + \delta]$ such that if $y(0) \in I$ then $y(t) \to a$ as $t \to \infty$. Which equilibria are stable?

