MAT 132
 Practice Midterm II Solutions.

This is a closed notes/ closed book/ electronics off exam.
Please write legibly and show your work.
Each problem is worth 20 points.

Full Name:						
Problem	1	2	3	4	5	Total
Grade						

Problem 1. Find the volume of a solid whose base is a circle of radius 1 , and whose horizontal cross-sections are squares.

Solution 1. At distance x from the center of the circle the square cross section has side length $2 \sqrt{1-x^{2}}$ and area $4\left(1-x^{2}\right)$. Thus the volume is

$$
\left.V=\int_{-1}^{1} 4\left(1-x^{2}\right) d x=4 x-\frac{4}{3} x^{3}\right]_{-1}^{1}=\frac{16}{3} .
$$

Problem 2. Let R be the region

$$
R=\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \sin x\}
$$

a. Find the center of mass of R.
b. Let S be the solid found by rotating R about the y axis. Find the volume of S.
c. Let T be the solid found by rotating R about the x axis. Find the volume of T.

Solution 2.

a. Let the center of mass be (\bar{x}, \bar{y}). By symmetry $\bar{x}=\frac{\pi}{2}$. The area of the figure is

$$
A=\int_{0}^{\pi} \sin x d x=2
$$

The first moment in the y direction is

$$
M_{y}=\frac{1}{2} \int_{0}^{\pi}(\sin x)^{2} d x=\frac{\pi}{4} .
$$

Hence $\bar{y}=\frac{M_{y}}{A}=\frac{\pi}{8}$.
b. By the method of cylindrical shells, the volume of rotation is

$$
\operatorname{Vol}(S)=\int_{0}^{\pi} 2 \pi x \sin x d x=2 \pi M_{x}
$$

Since $M_{x}=A \bar{x}=\pi, \operatorname{Vol}(S)=2 \pi^{2}$.
c. By the method of cross-sectional slices,

$$
\operatorname{Vol}(T)=\int_{0}^{\pi} \pi(\sin x)^{2} d x=2 \pi M_{y}=\frac{\pi^{2}}{2}
$$

Problem 3. Find the length of a curve given by the parametric equations $x(t)=e^{t} \cos t, y(t)=e^{t} \sin t, 0 \leq t \leq \pi$. Find the average x and y coordinates over this interval.

Solution 3. We have

$$
x^{\prime}(t)=e^{t} \cos t-e^{t} \sin t, \quad y^{\prime}(t)=e^{t} \sin t+e^{t} \cos t .
$$

Thus

$$
x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=e^{2 t}\left[(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}\right]=2 e^{2 t} .
$$

Thus the arc length is

$$
\int_{0}^{\pi} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\sqrt{2} \int_{0}^{\pi} e^{t} d t=\sqrt{2}\left(e^{\pi}-1\right) .
$$

The average x value is

$$
\bar{x}=\frac{1}{\pi} \int_{0}^{\pi} e^{t} \cos t d t .
$$

Integrate by parts with $u=e^{t}, d u=e^{t} d t, d v=\cos t d t, v=\sin t$. Thus

$$
\int e^{t} \cos t d t=e^{t} \sin t-\int e^{t} \sin t d t
$$

Integrate by parts again, now with $u=e^{t}, d u=e^{t} d t, d v=\sin t d t$, $v=-\cos t$. Thus

$$
\int e^{t} \cos t d t=e^{t} \sin t+e^{t} \cos t-\int e^{t} \cos t d t
$$

so

$$
\int e^{t} \cos t d t=\frac{1}{2}\left[e^{t} \sin t+e^{t} \cos t\right]+C
$$

Thus

$$
\bar{x}=\frac{1}{\pi}\left[\frac{1}{2}\left(e^{t} \sin t+e^{t} \cos t\right)\right]_{0}^{\pi}=\frac{1}{2 \pi}\left(-1-e^{\pi}\right)
$$

The average y value is

$$
\bar{y}=\frac{1}{\pi} \int_{0}^{\pi} e^{t} \sin t d t .
$$

Integrate by parts with $u=e^{t}, d u=e^{t} d t, d v=\sin t d t, v=-\cos t$ to find

$$
\int e^{t} \sin t d t=-e^{t} \cos t+\int e^{t} \cos t d t=\frac{1}{2}\left[e^{t} \sin t-e^{t} \cos t\right]+C
$$

Thus $\bar{y}=\frac{1}{2 \pi}\left(e^{\pi}+1\right)$.

Problem 4. A 5 kg mass is attached to a spring with spring constant $K=20 \mathrm{~kg} / \mathrm{s}^{2}$. The spring is stretched to 10 cm and then released, after which it exhibits simple harmonic motion with displacement from equilibrium in cm

$$
x(t)=10 \cos (2 t) .
$$

Find the work done in Joules on the mass by the spring between $t=0$ and $t=\frac{\pi}{2}$.

Solution 4. At time $t=\frac{\pi}{2}$ the mass is at position -10 and over the interval the mass moves from position 10 to position -10 . While moving from 10 to 0 , the force from the spring is in the direction of motion, while from 0 to -10 it opposes the motion. By symmetry, the work done is 0 , since the magnitude of the force at x and $-x$ is equal.

Problem 5.

a. Given the initial value problem $y^{\prime}=2(x+y-1), y(0)=1$, use Euler's method with step $h=\frac{1}{2}$ to estimate $y(2)$.
b. Find the equilibria of the time homogeneous differential equation $y^{\prime}=\cos (\pi y)$. An equilibrium $y=a$ is called stable if there is a small interval $I=[a-\delta, a+\delta]$ such that if $y(0) \in I$ then $y(t) \rightarrow a$ as $t \rightarrow \infty$. Which equilibria are stable?

Solution 5.

a.

x	y	y^{\prime}
0	1	0
$\frac{1}{2}$	1	1
1	$\frac{3}{2}$	3
$\frac{3}{2}$	3	7
2	$\frac{13}{2}$	

Euler's method thus estimates $y(2) \approx \frac{13}{2}$.
b. Equilibria occur where $y^{\prime}=0$ for all t, and hence, where $\cos (\pi y)=$ 0 . This occurs when y differs from an integer by $\frac{1}{2}$.

An equilibrium a is stable if there is an interval $[a-\delta, a+\delta]$ such that $\cos (\pi y)>0$ for $a-\delta \leq y<a$ and $\cos (\pi y)<0$ for $a<y \leq a+\delta$ and unstable when the opposite inequalities are true. This is because, under the stable condition, the solution is moving towards a with positive derivative at any given time, and crosses any separating threshold from a in finite time. This may be proven rigorously using the mean value theorem. The stable equilibria are $\frac{1}{2}$ more than twice an integer, i.e. ..., $-\frac{3}{2}, \frac{1}{2}$, $\frac{5}{2}, \frac{9}{2}, \ldots$.

