
SPRING 2020: MAT 320 MIDTERM 2

The purpose of this midterm exam is to prove a version of the existence and uniqueness
theorem for ordinary differential equations. Solve the problems independently without out-
side aids. Your solutions should be submitted on Blackboard as for the weekly homework
assignments.

Problem 1. (20 pts) Suppose f is differentiable on [a, b], f(a) = 0, and there is a real
number A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all x ∈ [a, b].

Hint: Fix x0 ∈ [a, b], let

M0 = sup |f(x)|, M1 = sup |f ′(x)|

for a ≤ x ≤ x0. For any such x,

|f(x)| ≤M1(x0 − a) ≤ A(x0 − a)M0.

Thus M0 = 0 if A(x0 − a) < 1.

Problem 2. (30 pts) Let φ be a real function defined on the rectangle R in the plane, given
by a ≤ x ≤ b, α ≤ y ≤ β. A solution of the initial-value problem

y′ = φ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f on [a, b] such that f(a) = c, α ≤ f(x) ≤ β, and

f ′(x) = φ(x, f(x)) (a ≤ x ≤ b).

Prove that such a problem has at most one solution if there is a constant A such that

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|

whenever (x, y1), (x, y2) ∈ R.

The following proof of the existence theorem for ODE’s uses several concepts for functions
of two variables which are generalizations of concepts for functions of one variable.

Definition 1. A function f : [a, b] × [c, d] → R is continuous at (x0, y0) if, for any ε > 0
there exists δ > 0 such that, if ‖(x − x0, y − y0)‖2 < δ then |f(x, y) − f(x0, y0)| < ε. A
function f is uniformly continuous if, for any ε > 0 there exists δ > 0 such that, whenever
‖(x1 − x2, y1 − y2)‖2 < δ, then |f(x1, y1)− f(x2, y2)| < ε.

You may use the fact that a continuous function on [a, b]× [c, d] is uniformly continuous.
For a proof of this fact, see the taped version of Lecture 18.
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Problem 3. (50 pts) Suppose φ is a continuous bounded real function in the strip defined
by 0 ≤ x ≤ 1, −∞ < y <∞. Prove that the initial-value problem

y′ = φ(x, y), y(0) = c

has a solution. It may help to follow the following steps.

a. For each n, let xi = i
n
, i = 0, 1, 2, ..., n and define a piecewise linear continuous

function fn(t) by

f ′
n(t) = φ(xi, fn(xi)), if xi < t < xi+1.

Define ∆n(t) = f ′
n(t) − φ(t, fn(t)) except at t = xi, where we define ∆n(xi) = 0.

Explain why

fn(x) = c+

∫ x

0

[φ(t, fn(t)) + ∆n(t)]dt.

b. Let M be such that |φ(x, y)| ≤ M . Prove that |f ′
n(x)| ≤ M , |∆n(x)| ≤ 2M , ∆n is

Riemann integrable, and |fn(x)| ≤M + |c| for all n and x ∈ (0, 1).
c. Show that there is a subsequence {fnk

} such that fnk
(q) converges to a value f(q) for

all rational q ∈ [0, 1]. (Hint: enumerate the rationals in [0, 1] as q1, q2, q3, .... First find

a subsequence f
(1)
nk (q1) which converges, which is possible by the Bolzano-Weistrass

theorem. Next find a subsequence f
(2)
nk (q2) which is a sub-subsequence of f

(1)
nk , and

which converges. Iterate this. As the final subsequence, choose f
(k)
nk and check that

this converges at each rational.)
d. Check that the subsequence {fnk

} which you found in part c. converges uniformly to
a continuous function f(x) on [0, 1], in the sense that, as k → ∞, supx∈[0,1] |f(x) −
fnk

(x)| → 0. It will be helpful to use the bound |f ′
nk

(x)| ≤M for all x and all k.
e. Check that φ is uniformly continuous on 0 ≤ x ≤ 1, |y| ≤M + |c|, and hence

φ(t, fnk
(t))→ φ(t, f(t))

uniformly on [0, 1].
f. Check that ∆n(t) converges to 0 uniformly on [0, 1], since

∆n(t) = φ(xi, fn(xi))− φ(t, fn(t))

in (xi, xi+1).
g. Hence

f(x) = c+

∫ x

0

φ(t, f(t))dt.

Thus f(x) is a solution to the given problem.


