
SPRING 2020: MAT 320 MIDTERM 2 SOLUTIONS

The purpose of this midterm exam is to prove a version of the existence and uniqueness
theorem for ordinary differential equations. Solve the problems independently without out-
side aids. Your solutions should be submitted on Blackboard as for the weekly homework
assignments.

Problem 1. (20 pts) Suppose f is differentiable on [a, b], f(a) = 0, and there is a real
number A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all x ∈ [a, b].

Hint: Fix x0 ∈ [a, b], let

M0 = sup |f(x)|, M1 = sup |f ′(x)|

for a ≤ x ≤ x0. For any such x,

|f(x)| ≤M1(x0 − a) ≤ A(x0 − a)M0.

Thus M0 = 0 if A(x0 − a) < 1.

Solution. Suppose for contradiction that f(x) 6= 0 for some x ∈ [a, b]. Let α = inf{x ∈
[a, b] : f(x) 6= 0}. Since f is continuous, f(α) = 0. Let

M0 = sup
α≤x≤x0

|f(x)|, M1 = sup
α≤x≤x0

|f ′(x)|

where α ≤ x0 < α + 1
A

. By the condition on f ′, M1 ≤ AM0. By the Mean Value Theorem,
for y ∈ (α, x0], there is c ∈ (α, y) such that

f(y) = f(y)− f(α) = f ′(c)(y − α)

and hence, M0 ≤M1(x0 − α) ≤ AM0(x0 − α). Since A(x0 − α) < 1, it follows that M0 = 0,
a contradiction.

Problem 2. (30 pts) Let φ be a real function defined on the rectangle R in the plane, given
by a ≤ x ≤ b, α ≤ y ≤ β. A solution of the initial-value problem

y′ = φ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f on [a, b] such that f(a) = c, α ≤ f(x) ≤ β, and

f ′(x) = φ(x, f(x)) (a ≤ x ≤ b).

Prove that such a problem has at most one solution if there is a constant A such that

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|

whenever (x, y1), (x, y2) ∈ R.
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Solution. Let f1, f2 be two solutions of the initial value problem and let g = f1 − f2. Then
g(a) = 0 and g′(x) = f ′1(x)− f ′2(x) = φ(x, f1(x))− φ(x, f2(x)) so that

|g′(x)| ≤ A|g(x)|.

It follows from the previous problem that g = 0, and hence f1 = f2.

The following proof of the existence theorem for ODE’s uses several concepts for functions
of two variables which are generalizations of concepts for functions of one variable.

Definition 1. A function f : [a, b] × [c, d] → R is continuous at (x0, y0) if, for any ε > 0
there exists δ > 0 such that, if ‖(x − x0, y − y0)‖2 < δ then |f(x, y) − f(x0, y0)| < ε. A
function f is uniformly continuous if, for any ε > 0 there exists δ > 0 such that, whenever
‖(x1 − x2, y1 − y2)‖2 < δ, then |f(x1, y1)− f(x2, y2)| < ε.

You may use the fact that a continuous function on [a, b]× [c, d] is uniformly continuous.
For a proof of this fact, see the taped version of Lecture 18.

Problem 3. (50 pts) Suppose φ is a continuous bounded real function in the strip defined
by 0 ≤ x ≤ 1, −∞ < y <∞. Prove that the initial-value problem

y′ = φ(x, y), y(0) = c

has a solution. It may help to follow the following steps.

a. For each n, let xi = i
n
, i = 0, 1, 2, ..., n and define a piecewise linear continuous

function fn(t) by

f ′n(t) = φ(xi, fn(xi)), if xi < t < xi+1.

Define ∆n(t) = f ′n(t) − φ(t, fn(t)) except at t = xi, where we define ∆n(xi) = 0.
Explain why

fn(x) = c+

∫ x

0

[φ(t, fn(t)) + ∆n(t)]dt.

b. Let M be such that |φ(x, y)| ≤ M . Prove that |f ′n(x)| ≤ M , |∆n(x)| ≤ 2M , ∆n is
Riemann integrable, and |fn(x)| ≤M + |c| for all n and x ∈ (0, 1).

c. Show that there is a subsequence {fnk
} such that fnk

(q) converges to a value f(q) for
all rational q ∈ [0, 1]. (Hint: enumerate the rationals in [0, 1] as q1, q2, q3, .... First find

a subsequence f
(1)
nk (q1) which converges, which is possible by the Bolzano-Weistrass

theorem. Next find a subsequence f
(2)
nk (q2) which is a sub-subsequence of f

(1)
nk , and

which converges. Iterate this. As the final subsequence, choose f
(k)
nk and check that

this converges at each rational.)
d. Check that the subsequence {fnk

} which you found in part c. converges uniformly to
a continuous function f(x) on [0, 1], in the sense that, as k → ∞, supx∈[0,1] |f(x) −
fnk

(x)| → 0. It will be helpful to use the bound |f ′nk
(x)| ≤M for all x and all k.
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e. Check that φ is uniformly continuous on 0 ≤ x ≤ 1, |y| ≤M + |c|, and hence

φ(t, fnk
(t))→ φ(t, f(t))

uniformly on [0, 1].
f. Check that ∆n(t) converges to 0 uniformly on [0, 1], since

∆n(t) = φ(xi, fn(xi))− φ(t, fn(t))

in (xi, xi+1).
g. Hence

f(x) = c+

∫ x

0

φ(t, f(t))dt.

Thus f(x) is a solution to the given problem.

Solution.

a. Let xi = i
n
, 0 ≤ i ≤ n. Define, recursively, for i = 0, 1, 2, ..., n− 1, for t ∈ [xi, xi+1],

fn(t) = c+
1

n

i−1∑
j=0

φ(xj, fn(xj)) + (t− xi)φ(xi, fn(xi)).

Thus fn is piecewise linear, and continuous at each xi. Furthermore, for t ∈ (xi, xi+1),
f ′n(t) = φ(xi, fn(xi)). Since the derivative is constant on intervals between [xi, xi+1], it
is Riemann integrable, and its indefinite integral is equal to the continuous piecewise
linear function fn up to a constant. It follows that

fn(x) = c+

∫ x

0

f ′n(t)dt = c+

∫ x

0

[φ(t, fn(t)) + ∆n(t)]dt

since the functions agree at 0.
b. For t ∈ (xi, xi+1), f

′
n(t) = φ(xi, fn(xi)), and hence |f ′n(t)| ≤M . Then

|∆n(t)| = |f ′n(t) + φ(t, fn(t))| ≤ 2M.

Since fn is continuous and φ is continuous φ(t, fn(t)) is continuous and hence Riemann
integrable. Hence ∆n(t) is Riemann integrable since it is the difference between f ′n(t)
and φ(t, fn(t)) except at finitely many points. Since |φ(t, fn(t)) + ∆n(t)| ≤ M , it
follows that

fn(x) ≤ |c|+M

by bounding the integrand from part a by M .
c. Let q1, q2, q3, ... be an enumeration of the rationals in [0, 1]. Since |fn(q1)| ≤M+ |c| is

bounded there is a subsequence f
(1)
ni (q1) which converges by the Bolzano-Weiestrass

Theorem. Next, find a further subsequence f
(2)
ni of the subsequence f

(1)
ni such that

f
(2)
ni (q2) converges. Since the subsequence of a convergent subsequence converges to

the same limit, f
(2)
ni (q1) also converges. Iterate this construction to find, for k =

1, 2, ..., a sequence f
(k)
ni which is a subsequence of f

(j)
ni for 1 ≤ j ≤ k − 1, such that
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f
(k)
ni converges at q1, q2, ..., qk. The sequence fni

whose ith term is the ith term of
f (i) has all terms after the ith belonging to f (i), and hence is a subsequence of the
original sequence, which converges at q1, q2, q3, ....

d. Given ε > 0, let δ = ε
3M

and let 0 = x0 < x1 < ... < xm = 1 be a δ-fine partition
of [0, 1] consisting of rational numbers. Choose N sufficiently large so that j, k > N
implies that |fnj

(xi) − fnk
(xi)| < ε

3
for each i = 0, 1, 2, ...,m. Given t ∈ [0, 1], let

t ∈ [xi, xi+1], we have, from the integral representation,

|fnj
(t)− fnj

(xi)| =
∣∣∣∣∫ t

xi

φ(u, fnj
(u)) + ∆nj

(u))du

∣∣∣∣ ≤M(t− xi) ≤Mδ ≤ ε

3

and similarly for |fnk
(t)− fnk

(xi)|. Hence

|fnj
(t)− fnk

(t)| ≤ |fnj
(t)− fnj

(xi)|+ |fnk
(t)− fnk

(xi)|+ |fnj
(xi)− fnk

(xi)| < ε.

It follows that (fnj
) is uniformly Cauchy, and hence converges uniformly to a contin-

uous function f .
e. Since {(x, y) : 0 ≤ x ≤ 1, |y| ≤ M + |c|} is closed and bounded and φ is continuous

on this space, it is uniformly continuous. Thus, given ε > 0 there is δ > 0 such that
if

‖(x, y)− (x0, y0)‖2 < δ

then |φ(x, y) − φ(x0, y0)| < ε. Since fnk
converges to f uniformly, there is a N such

that k > N implies for all t ∈ [0, 1], |fnk
(t)−f(t)| < δ. Then ‖(t, fnk

(t))−(t, f(t))‖2 <
δ, so |φ(t, fnk

(t))− φ(t, f(t))| < ε.
f. For fixed n, for t ∈ (xi, xi+1), |t − xi| < 1

n
, and hence |fn(t) − fn(xi)| ≤ M

n
. Hence

‖(xi, fn(xi))− (t, fn(t))‖2 ≤ (M + 1) 1
n

tends to 0 uniformly in t as n→∞. Thus, by
the uniform continuity of φ, ∆n(t) = φ(xi, fn(xi)) − φ(t, fn(t)) tends to 0 uniformly
as n→∞.

g. Since ∆n(t)→ 0 uniformly in t as n→∞, and φ(t, fnk
(t))→ φ(t, f(t)) uniformly in

t as k →∞,

f(x) = lim
k→∞

fnk
(x)

= lim
k→∞

c+

∫ x

0

φ(t, fnk
(t)) + ∆nk

(t)dt

= c+

∫ x

0

φ(t, f(t))dt.

Thus f solves the initial value problem, as may be verified from the Fundamental
Theorem of Calculus.


